Abstract

How do instant payment technologies impact financial intermediation? I use municipality-level data on the development of Pix in Brazil to provide evidence that instant payments positively impact deposit market competition – small banks increase deposits and reduce deposit rates in areas with more Pix usage. I further exploit municipality-level COVID-19 restrictions to identify a persistent effect of Pix on local deposit market concentration over five months after the launch, and a positive impact on bank deposits, resulting in more loans by both large and small banks. I estimate the deposit demand model and show that the deposit markets would be more concentrated if Pix were never introduced or if Pix were available only to large banks. The findings suggest that the universally available instant payment systems can foster banking competition with positive consequences for deposits and loans.

Keywords: Instant payment systems, deposit market power, banking, Pix

JEL Codes: E42, G21, G11, E58

†Department of Finance, Wharton School, University of Pennsylvania.
E-mail address: sesar@wharton.upenn.edu
1 Introduction

Retail payments and money transfers are vital components of household finances, playing a significant role in both expenses and income. An efficient payment and transfer system not only helps households reduce financial risks by providing timely access to funds but also offers convenience through electronic payment methods. However, financial barriers such as lengthy transfer wait times and credit card fees often lead households to keep their savings in low-interest accounts at large banks or in cash. Consequently, these larger, more interconnected banks gain substantial market share due to their superior access to payment technologies, creating additional challenges for clients of smaller banks.

The increasing prevalence of instant payment systems (IPS) worldwide addresses the frictions associated with traditional banking payments. These systems enable real-time money transfers within seconds, making them a preferred payment method in countries where they have been implemented. As a result, major economies have either developed their IPS (e.g., Swish in Sweden, UPI in India, and Pix in Brazil) or are in the process of doing so (e.g., FedNOW in the United States, planned for launch in 2023). These instant payment systems are often cost-effective for banks, attracting participation from both large and small institutions. The universal nature of these payment technologies provides small banks with the opportunity to offer payment convenience comparable to that of their larger counterparts. This setting naturally lends itself to the examination of how increased payment convenience impacts competition in deposit markets. In this paper, I shed light on the question by asking how instant payment systems impact competition for bank deposits.

To address these questions, I utilize administrative data on Pix, an instant payment system introduced by the Central Bank of Brazil (CBB) in November 2020. Pix not only enables instant transfers but also boasts widespread acceptance as a merchant payment method due to its lower fees compared to credit cards. Since its launch, Pix has emerged as a dominant electronic payment method, surpassing other prominent options such as Boleto Bancário, TED, direct debits, and even credit and debit cards (see Figures 1
and 2). Cash transactions are also steadily declining since Pix has been introduced. By November 2022, Pix transactions were reaching almost R$ 3 trillion per quarter, equivalent to approximately $600 billion based on the January 2023 exchange rate.¹ This substantial growth aligns with the increasing popularity of online platforms during the COVID-19 pandemic and the gradual easing of restrictions in Brazilian municipalities. Considering Brazil’s status as one of the world’s largest economies and the largest in Latin America, Pix provides an excellent context to investigate the impact of instant payments on investment behavior.

In my analysis, I employ municipality-level monthly data on Pix transactions and user numbers sourced from the website of the Central Bank of Brazil. This data is supplemented with economic and demographic information at the municipality level. Additionally, I utilize branch-level banking data and uncover evidence indicating that the introduction of Pix has led to an increase in checking, saving, and time deposits in small banks relative to large banks. Typically, large banks enjoy an advantage in terms of convenience due to their product offerings. However, when Pix is introduced, accessible to all banks including FinTechs, the convenience gap between small and large banks diminishes, thereby boosting the demand for deposits in small banks. Notably, the most substantial increase in deposits is observed in time deposits, which are interest-bearing accounts with a specified maturity date (e.g., certificates of deposit). These accounts offer relatively higher interest rates, incentivizing clients to shift their funds when payment convenience meets their needs.

To further explore the impact of Pix, I examine its effect on total bank lending. The results indicate that both large and small banks increase their total loans, with no significant difference between them. This suggests that large banks do not reduce lending relative to small banks despite experiencing a loss of deposits. Instead, they decrease their financing activities, which involve subsidized low-interest loans to real

¹For comparison, debit card transactions amounted to R$664 billion in 2019. See https://business.ebanx.com/en/brazil/payment-methods/debit-card and Figure A.1 in the Appendix A.
Figure 1: Electronic Means of Payment in Brazil, Quantities

![Graph showing electronic means of payment in Brazil from 2019q1 to 2023q1.]

Note: Data is from the Central Bank of Brazil. The graph plots the number of transactions for the main electronic means of payment in Brazil – Pix (instant payment system launched in November 2020), Direct payments (includes Boleto Bancário (payment slip used by the coalition of large Brazilian banks since 1993), direct deposit, and others), cards (debit, credit, and pre-paid), and wire transfers (TED, DOC, cheque, and others).

estate and agricultural firms. I show that large banks are able to maintain their lending levels by raising alternative uninsured funds, aligning with theoretical evidence from Whited, Wu, and Xiao (2022) that supports this phenomenon. Overall, these findings imply that the funding and investments of large banks become riskier due to the introduction of Pix.

Changes to deposit market concentration should result in deposit rate movements. Large banks in Brazil generally pay lower deposit rates because they are able to attract depositors through payment convenience. Small banks, in contrast, have to pay higher interest rates to attract depositors. I collect data on interest expense and deposits of
Brazilian banks and show that small banks reduce their deposit rates relative to large banks in areas with more usage of Pix. Furthermore, I collect data on personal loan rates and find that the disparity in rates offered by small and large banks narrows following the launch of Pix.

To examine the impact of Pix on deposit market concentration, I show a decrease in the Herfindahl-Hirschman index (HHI) of the retail deposit market for at least the five months following the introduction of Pix in municipalities. A higher volume of Pix transactions, both in absolute terms and per capita, is associated with lower deposit market concentration. While this finding is robust, there are two identification challenges that need to be addressed. Firstly, Pix is more prevalent in competitive areas, which
raises concerns about reverse causality. Secondly, unobservable factors related to deposit demand may be omitted, even when county-time fixed effects are included.

To tackle these challenges, I utilize municipality-level survey data on the implementation and easing of COVID-19 restrictions in Brazil.\(^2\) I assume that the easing of COVID-19 restrictions by September 2020 impacts changes in deposit market concentration from October to November 2020 solely through its impact on Pix.\(^3\) By utilizing this methodology, I provide causal evidence supporting the previous findings that larger Pix transactions lead to lower deposit market concentration over a period of at least five months, accompanied by an inflow of retail deposits across all types. For instance, if residents of a municipality with five equally sized banks increase their Pix transactions by 1000 Brazilian reals, there will be six equally sized banks within five months in that municipality. I make similar conclusions by using access to high-speed internet as an instrument instead of the easing of COVID-19 restrictions.

There is a potential concern regarding the comparison between banks, as my analysis primarily focuses on the differences between large and small banks without providing a clear picture of how aggregate variables change. However, the identification strategy leveraging COVID-19 shocks helps address this issue by providing causal estimates of the impact of Pix on deposits and loans across all banks. The analysis reveals a significant increase in checking, saving, and time deposits in municipalities with higher Pix transactions. This suggests that the introduction of Pix has led to a greater influx of deposits in these areas. Furthermore, I show that lending also increases in these municipalities, indicating that there is no disruption in credit provision despite the loss of market power by large banks. This finding suggests that small banks are able to capture a larger share of deposits without negatively affecting large banks’ lending volumes.

To further strengthen the results, I conduct several robustness tests. First, I show that the reduction in deposit market concentration was intensive rather than extensive.

\(^2\)Made available by de Souza Santos et al. (2021).

\(^3\)My preferred instrumental variable specification is the identification through heteroskedasticity in the simultaneous relation model (Rigobon and Sack (2003, 2004); Hébert and Schreger (2017)), since it only requires assumptions on variances of regression shocks.
In other words, I do not find evidence that the quantity of bank branches increases after Pix launch. Second, I address the concern that HHI does not fully capture deposit market power. Specifically, I use deposit flow betas as a measure of market power and show that my main results hold – small banks gain significant deposit market power relative to large banks as a result of Pix launch. Finally, I provide anecdotal evidence on a particular type of instant payment – central bank digital currencies. I hand-collect data from Nigeria, the largest country to have launched CBDC, showing that both deposits and loans have increased since e-Naira was introduced. I compare Nigeria to Kenya – economically similar African country without CBDC to argue that deposits in Nigeria grew more than in Kenya.

The empirical evidence presented in this paper provides valuable insights into the impact of instant payment technologies on the banking system. The findings suggest that the introduction of instant payment systems, such as Pix, has a positive effect on both deposits and loans in the banking sector. This indicates that these technologies contribute to the growth of deposit markets and enhance competition among banks.

Finally, I construct and estimate a deposit demand model to investigate the effects of instant payment systems on deposit demand and explore counterfactual scenarios. The model follows the framework of industrial organizations literature (Berry, Levinsohn, and Pakes (1995); Nevo (2001); Wang, Whited, Wu, and Xiao (2022)), where households make choices regarding the banks they open deposit accounts with. Deposit interest rates and the availability of Pix influence these choices. The estimation results demonstrate that a one percentage point increase in deposit rates leads to

4Common view from the theory is that CBDC will crowd out bank deposits. I argue that such results are artifacts of not considering cash or assuming that converting deposits into cash is frictionless. Although such assumptions might hold in many developed countries, they likely do not hold in the US, UK, and most developing economies. CBDC literature includes Chiu, Davoodalhosseini, Hua Jiang, and Zhu (2019); Brunnermeier and Niepelt (2019); Andolfatto (2020); Schilling, Fernandez-Villaverde, and Uhlig (2021); Ferrari Minesso, Mehl, and Stracca (2022); Williamson (2022); Agur, Ari, and Dell’Ariccia (2022); Whited, Wu, and Xiao (2022); Garratt, Yu, and Zhu (2022); Cong and Mayer (2022); Keister and Sanches (2023).

5In Appendix D.1, the study shows that a 1% increase in Pix transactions leads to a 0.15% increase in capital investment at the municipality level in Brazil. This suggests that the adoption of instant payment systems like Pix promotes economic activity and results in larger investments.
a 0.8% increase in deposit share. Consistently with the previous findings, a 1% increase in the value of Pix transactions corresponds to a 2.3% increase in small banks’ deposit shares relative to large banks.

The estimated model allows for an analysis of welfare implications and counterfactual scenarios. I examine two counterfactuals: one where Pix is not introduced at all and another where large banks exclusively offer Pix. Firstly, I show that the introduction of Pix leads to welfare gains in Brazil. However, if Pix were only offered by large banks, the welfare gains would be significantly lower. Additionally, I find that in both counterfactual scenarios, deposit markets would be more concentrated. Specifically, if Pix were never launched, the Herfindahl-Hirschman Index (HHI) would be 3% higher in November 2020 compared to the actual scenario. By February 2021, HHI would be 3.7% higher. Furthermore, deposit markets would be considerably more concentrated if Pix were exclusively offered by large banks, with HHI being 116% higher in November 2020 compared to the “no Pix” scenario. These results suggest that if Pix were designed similarly to other payment technologies accessible only to large banks, deposit markets would experience significant concentration. As a robustness test, I estimate the model separately for each region of Brazil and find consistent implications. I also show that deposit demand becomes more sensitive to policy rate changes after the introduction of Pix, consistent with the market power channel.

This paper contributes to several strands of the literature. First, I provide causal evidence on the impact of instant payments on banking and add to the established literature on technologies and bank competition. Several empirical and theoretical studies document that the adoption of new technologies (such as ATMs and information technologies) gives a bigger advantage to large banks, thus decreasing the intensity of bank competition (Hannan and McDowell (1990); Hauswald and Marquez (2003)). Other papers show that adopting technologies intensifies competition by providing small banks and FinTechs with better information (Vives and Ye (2021); He, Huang, and Zhou (2023); Ghosh, Vallee, and Zeng (2021)). More broadly, new technologies and increased conve-
nience can intensify competition among firms and lead to an increase in bank accounts (Dupas, Karlan, Robinson, and Ubfal (2018); Bachas, Gertler, Higgins, and Seira (2018, 2021); Higgins (2020)). I show that the instant payment system with uniform access has a persistent positive impact on deposit market competition by increasing the convenience of small bank deposits relative to large banks.

My paper generally relates to the growing literature on mobile payments and convenience. Mobile payments are growing and intervening in all spheres of the economy (Ferrari, Verboven, and Degryse (2010); Aker and Mbiti (2010); Muralidharan, Niehaus, and Sukhtankar (2016); Riley (2018); Duffie (2019); Ouyang (2021); Brunnermeier, James, and Landau (2019); Aker, Prina, and Welch (2020); Brunnermeier and Payne (2022); Brunnermeier, Limodio, and Spadavecchia (2023); Bian, Cong, and Ji (2023)). For example, Balyuk and Williams (2021) study how a private US-based instant payment network Zelle impacts overdrafts, especially during economic downturns. Jack and Suri (2014) and Suri and Jack (2016) find a positive effect of Kenyan private instant payment M-Pesa on consumption and poverty. While these papers rely on network formation in adopting platforms, Crouzet, Gupta, and Mezzanotti (2023) and Chodorow-Reich, Gopinath, Mishra, and Narayanan (2020) use demonetization in India to study the impact of technologies on welfare and consumption. Dubey and Purnanandum (2023) show that UPI in India spurs economic growth. A large body of literature documents how FinTech lenders compete with traditional banks by providing convenience (including via payments) to clients underserved by banks (Buchak, Matvos, Piskorski, and Seru (2018); Erel and Liebersohn (2022); Ghosh, Vallee, and Zeng (2021); Chava, Ganduri, Paradkar, and Zhang (2021); Di Maggio and Yao (2021); Gopal and Schnabl (2022); Parlour, Rajan, and Zhu (2022); Babina, Buchak, and Gornall (2022); Beaumont, Tang, and Vansteenberghe (2022)). I add to the literature by showing that cashless payments are an important facet of banking concentration since they help banks to provide convenience to their depositors.

6For the literature review, see Berg, Saunders, Schäfer, and Steffen (2021).
7Other papers have documented convenience’s role in adopting new technologies without em-
Finally, this paper adds to the literature on bank market power and the impact of central bank policy on banks. Commercial banks have significant market power which allows them not to respond strongly to monetary policy (Berger and Hannan (1989); Hannan and Berger (1991); Diebold and Sharpe (1990); Neumark and Sharpe (1992); Drechsler, Savov, and Schnabl (2017)). In addition, due to the costs of switching, clients of intermediaries often stay with them despite more profitable options (Petersen and Rajan (1994); Sharpe (1997); Kiser (2002); Ioannidou and Ongena (2010); Handel (2013); Illanes (2017)). I show that the central bank can promote deposit market competition, thus increasing welfare and potentially clearing the way for a more efficient monetary policy.

The rest of the paper is organized as follows. Section 2 describes the institutional setting and the state of development of instant payment systems. Section 3 describes the main data sources. Section 4 provides evidence of Pix’s interaction with deposit and loan markets. Section 5 discusses identification challenges in the analysis, and further uses COVID-19 restrictions to causally identify the impact of Pix on deposit market concentration in Brazil. Section 6 shows several robustness tests. Section 7 presents an estimation of the deposit demand model with further counterfactual and welfare analysis. Section 8 concludes.

2 Institutional setting

Before describing primary data sources and empirical strategy, I overview the development of instant payment systems worldwide and then focus specifically on Pix in Brazil.

Deposit market power is one of the channels of the monetary transmission. Monetary policy transmits to lending and investments through various banking channels, including reserves, capital, and deposits (Bernanke and Blinder (1988, 1992); Kashyap and Stein (2000); Bolton and Freixas (2000); Brunnermeier and Sannikov (2014); Drechsler, Savov, and Schnabl (2017, 2021)). Central banks can also impact commercial banks and hence, welfare through capital and leverage regulations (Van den Heuvel (2008); Begenau (2020); Elenev, Landvoigt, and Van Nieuwerburgh (2021); Begenau and Landvoigt (2022)).
2.1 Instant payment systems

Instant payment platforms have been developing worldwide to promote faster and more efficient payments. They effectively address several frictions existing in traditional banking payments. The first is a delay in transfers – senders’ and receivers’ banks have to verify details for security purposes, thus increasing wait times (e.g., it takes up to 3 business days to withdraw money from Venmo – private payment platform operating in the US) and working only on business days. The second is accessibility. Most banking operations can be performed either within the same bank or a group of large banks (e.g., banks with access to Venmo), creating additional friction for transferring money to external bank accounts. Finally, P2B (person-to-business) and P2M (person-to-merchant) payments are mostly dominated by credit and debit cards that require merchants to pay fees. As a result, many merchants only accept cash, thus forcing their customers to either keep cash in advance or withdraw it from ATM, incurring additional costs.9

FinTechs, commercial banks, and governments work on creating instant payment platforms to mitigate friction associated with payments. Their immediate advantage is two-fold. First, they allow for real-time within-second transfers provided that senders’ and receivers’ banks have access to the platform. Second, several platforms allow making P2B payments at the same time without imposing hefty fees on merchants.10 In this paper, I will focus on IPS created by governments. First, such IPS are ubiquitous, i.e., are offered by most banks and FinTechs. Second, the costs of using for all agents (households, merchants, and banks) are low. For example, entry costs to Swish (an instant payment platform operating in Sweden that six large banks created) are high,

9I check the Survey of Consumer Payment Choices that is conducted annually by Atlanta Fed to understand whether credit/debit card non-acceptance is an issue in the US. According to the survey, households assign an average rating of 4.62 out of 5 and 4.55 out of 5 to acceptance of credit and debit cards in their counties, respectively. The survey includes online stores as well. Hence, the numbers are likely underestimated.

10In some cases, platforms are only accessible by institutions. For example, FedNOW, which the Federal Reserve System is developing, will be mainly used for interbank transactions. The majority of platforms can mainly be used for transfers but not payments. Examples include Zelle in the US – technically, both can be used to pay, but such cases are rare. Payment systems that are used as means of payment include Pix in Brazil and Swish in Sweden.
whereas the costs of using Pix are minuscule. That is why costs of entry are another friction that government-created IPS address – even in countries with advanced instant payment platforms, central banks work on creating a public analog (e.g. Rix in Sweden will be launched by Sveriges Riksbank, although Swish is successfully operating).

Table 1 summarizes notable examples of instant payment platforms with launch dates and short descriptions. According to the Table, many platforms were created by central banks, but the most successful in terms of the user base is Pix – an instant payment system developed by the Central Bank of Brazil in November 2020. There are several reasons why Pix is dominating all retail payments in Brazil. First, it allows real-time, within-second payments and transfers. Second, Pix is free to use for households and ten times as cheap for merchants as credit cards, thus mitigating significant payment frictions usual for traditional banking. Third, Brazil’s population is bank-dependent – more than 90% of Brazilians have bank accounts. Partly, it is due to a developed payment and banking network in the country (Boleto Bancário has been operating since 1993) and the presence of large public banks such as Banco do Brasil. Another reason is the timeline – COVID-19 pandemic and subsequent stimulus payments forced households to open bank accounts. Thus, Pix is an excellent setting to study the impact of instant payments on financial intermediation.

2.2 Development of Pix in Brazil

Brazil’s payments are subject to similar frictions as payments in the US. Credit and debit card markets are mainly dominated by Visa and MasterCard, who collect payment fees from merchants. Duarte, Frost, Gambacorta, Koo Wilkens, and Shin (2022) estimate the debit card fees to be above 1% and credit card fees to reach 2.2%. The payment slip Boleto Bancário at the same time is offered by only 114 banks, which creates challenges for clients of other banks and FinTech companies. Finally, traditional payments

11Duarte et al. (2022) show that Pix fees are 0.22% for merchants as opposed to 2.2% for credit cards. Pix is also very cheap for banks since costs are shared among participants. Specifically, ten transfers cost R$ 0.01 as of November 2, 2020.
Table 1: Instant Payment Systems: Examples

<table>
<thead>
<tr>
<th>Country</th>
<th>System</th>
<th>Launch year</th>
<th>Inventor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>NPP</td>
<td>2018</td>
<td>Private</td>
</tr>
<tr>
<td>Brazil</td>
<td>Pix</td>
<td>2020</td>
<td>Central Bank</td>
</tr>
<tr>
<td>Denmark</td>
<td>MobilePay</td>
<td>2013</td>
<td>Central Bank</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>FPS</td>
<td>2018</td>
<td>Central Bank</td>
</tr>
<tr>
<td>India</td>
<td>UPI</td>
<td>2016</td>
<td>Central Bank</td>
</tr>
<tr>
<td>Kenya</td>
<td>M-Pesa</td>
<td>2007</td>
<td>Private</td>
</tr>
<tr>
<td>Sweden</td>
<td>Swish</td>
<td>2014</td>
<td>Private</td>
</tr>
<tr>
<td>United States</td>
<td>Zelle</td>
<td>2017</td>
<td>Private</td>
</tr>
</tbody>
</table>

Note: This table provides several notable examples of instant payment platforms. The last column shows whether the government or private company invented the platform. The table does not include CBDCs.

Interbank transfers are not instant since they must be verified for security reasons. For example, it can take two business days to make a transfer from the account at the Banco do Brasil (the largest commercial bank in Brazil).

The Central Bank of Brazil announced Pix in the summer of 2019. It took slightly more than one year to officially launch it in November 2020. Since then, Pix has dominated all retail payments in Brazil (see Figure 2). Large and medium banks in Brazil (with more than 500,000 accounts) are required to offer Pix – there are 36 banks of such size in Brazil. However, most banks and FinTechs in Brazil joined Pix very soon after its launch – currently, there are more than 790 participants in Pix.\(^\text{12}\)

As of January 2023, more than 120 million Brazilians use Pix for transactions (nearly 60% of the population). To transact Pix, users must have an active bank account. Then users can send or receive funds in Pix by scanning a QR code. Each user has a unique key regardless of the bank account.\(^\text{13}\) The procedure is quite similar to Venmo, except there is no intermediary between sender and receiver – funds become available at receivers’ bank accounts within seconds, even beyond business days. Pix is also more convenient than Boleto Bancário which required to collect (either physically or electronically) a receipt.

\(^{12}\)For the complete list of participants see the source from the Central Bank of Brazil.

\(^{13}\)Unlike CBDCs that rely on distributed ledger technologies.
and then scanning the code in the mobile banking app and waiting for verification. Merchants can also use Pix if their accounts are opened at the participating bank. Then, merchants offer their customers to scan a QR code to pay.

3 Data

I use the adoption of Pix in Brazil as a setting to study how instant payments impact investments and banks. I collect administrative data on monthly Pix transactions from the Central Bank of Brazil. The data include the municipality where the transaction is made, the total monthly value of transactions in Brazilian reals, and the number of users. I can then calculate per capita and per-user transactions for all 5,570 municipalities. Pix data starts in November 2020 (the month of Pix launch).

I collect monthly balance sheet data for bank branches operating in Brazil from ES-TBAN. The data covers 313 banks from August 1988 till November 2022. The data includes bank identifiers (cnpj) and balance sheet data – deposits by type, loans, financing, cash positions, reserves, interbank loans, etc. Data also contain municipalities where branches operate, which allows me to calculate deposit market concentrations (Herfindahl-Hirschman index or HHI) for municipality m at time t as follows using private deposits for each bank i in a municipality:

$$HHI_{mt} = \sum_{i=1}^{N} \left(\frac{D_{it}}{D_{mt}} \right)^2$$ \hspace{1cm} (1)

$HHI_{mt} = 1$ for monopolies. A larger number implies more concentrated markets, whereas a smaller number implies competitive markets.14 I supplement the data with bank-level series of interest rates from the Central Bank of Brazil. Specifically, I collect quarterly data on interest expenses to use them as proxies for deposit rates, and monthly public and private payroll personal loans.

14HHI might not fully reflect banks' market power. That is why I also test changes in sensitivities of deposits to policy rate changes in robustness tests.
I collect data on capital investments and total savings from *O Instituto de Pesquisa Econômica Aplicada* (IPEA) – a source of economic data from Brazil. Data are annual and available at the municipality level from 1990 till current. I collect annual data on the GDP of each municipality from IBGE – *Instituto Brasileiro de Geografia e Estatística*. Finally, I gather macroeconomic data on inflation, unemployment, economic growth, and exchange rates from the Central Bank of Brazil.

I supplement economic data with demographic data from the 2010 Census, maintained by IBGE. Specifically, for each municipality, I observe the population, percent of educated and unemployed, gender and race statistics, measures of the conservatism of the family, and level of income. I also observe the status of the municipality, i.e., whether it is a capital or not. For example, the municipality of Curitiba is the capital of the state of Paraná. I provide a complete description of data definitions and sources in Appendix B.

Table 2 shows summary statistics. Panel A provides statistics for Pix usage depending on the status of the municipality. Pix is used significantly more in the capitals. However, per person value of transactions is only twice as large in the capitals than in the rest of the country. Panel C shows the main differences between municipalities. For example, capitals have a lower ratio of illiterate, conservative, and older people. There is also a striking difference in deposit market concentration across municipalities – deposit markets in peripheral areas are significantly more concentrated than in the capitals. At the same time, GDP per capita does not vary considerably across types of municipalities.

Table 3 provides statistics on banks separately for large and small banks for two months before Pix launch and after. I define large banks as intermediaries with more than 50 million depositors.\(^{15}\) Large banks own 41% of total assets in the economy and around 30% of branches. Checking, time, and saving deposits increase both types of banks, but the increase is relatively larger for smaller banks. For example, checking deposits in an average large bank branch rise by $R\ 1$ million, whereas they rise by $R\ 2$

\(^{15}\)Main results are robust to defining large banks as banks with over 20 million depositors.
Table 2: Summary Statistics: Municipalities

<table>
<thead>
<tr>
<th></th>
<th>All municipalities</th>
<th>Capitals</th>
<th>Non-capitals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. dev.</td>
<td>Mean</td>
</tr>
<tr>
<td>Total transaction value (mill. R$)</td>
<td>65</td>
<td>628</td>
<td>2,939</td>
</tr>
<tr>
<td>Total transactions (th.)</td>
<td>101</td>
<td>1,043</td>
<td>4,792</td>
</tr>
<tr>
<td>Value per person (th. R$)</td>
<td>0.62</td>
<td>0.95</td>
<td>1.39</td>
</tr>
</tbody>
</table>

Panel A: Pix data (Banco Central do Brasil)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. dev.</th>
<th>Mean</th>
<th>Std. dev.</th>
<th>Mean</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital investments (mill. R$)</td>
<td>66</td>
<td>346</td>
<td>1,919</td>
<td>3,114</td>
<td>51</td>
<td>119</td>
</tr>
<tr>
<td>Personal savings (mill. R$)</td>
<td>0.81</td>
<td>7.35</td>
<td>39</td>
<td>68</td>
<td>0.47</td>
<td>1.29</td>
</tr>
</tbody>
</table>

Panel B: Investments and savings (IPEA)

Population (th.)	62	297	1,886	2,451	46	88
% under 40 y.o.	57	4.8	60	4.1	57	4.8
% females	50	1.5	52	1.2	50	1.5
% single responsible	71	8.1	66	3.2	71	8.1
% rural	28	20	1.9	2.6	28	20
% illiterate	14	9.5	5.1	2.5	14	9.5
GDP per capita (th. R$)	32	30	36	16	31	30
Deposit HHI	0.63	0.31	0.06	0.06	0.63	0.31

Panel C: Municipality characteristics (IBGE)

Inflation (%)	6.63	1.91
Unemployment (%)	14.3	0.52
USD exchange rate (R$)	5.31	0.2

Note: This table provides descriptive statistics for the data used in the main analysis of the paper. Panel A shows statistics for Pix data. Panel B provides means and standard deviations for investments and savings. Panel C shows demographic and economic data for municipalities. Panel D provides macro data. Finally, Panel E contains branch characteristics. The table splits the sample of municipalities by their status – columns 3 and 4 contain statistics for the capitals, and columns 5 and 6 – for other municipalities.
million in an average small bank branch. Note that neither small nor large banks change their deposit composition significantly, implying increases in all types of deposits. On the asset side, small banks increase their loans, whereas large banks increase loans but reduce financing.16

4 Impact of instant payments on deposit and loan markets

Instant payment systems facilitate transactions by mitigating payment and transfer frictions. I thus expect Pix to impact deposits and loans positively. Instant payments also allow smaller banks to offer similar products to large banks, thus potentially decreasing the deposit market concentration. I test the hypotheses in this section.17

4.1 Pix and bank deposits

Commercial banks have significant deposit market power, which allows them to set low rates, especially in counties where they do not face big competition (Drechsler, Savov, and Schnabl (2017)). However, location is not the only source of deposit market power – another determinant is the products and convenience that banks offer. For example, if JP Morgan Chase is the only bank in Philadelphia county that offers online banking, it can afford to pay lower deposit rates than its competitors. That is why large banks set lower deposit rates than small banks – partly because they offer greater convenience (Garratt, Yu, and Zhu (2022)).

The introduction of instant payment systems should impact deposit market concentration because it is a product delivered through banks, so it changes the convenience difference between participants and other banks. Then it is important how participants are selected. If large banks create IPS, so small banks cannot deliver it, large banks

16Financing includes low-interest-bearing safe credit, such as agricultural and real estate loans.

17Appendix F describes a finite-horizon model that retionalizes the hypotheses.
Table 3: Summary Statistics: Banks

<table>
<thead>
<tr>
<th></th>
<th>Large banks</th>
<th></th>
<th></th>
<th>Small banks</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Std. dev.</td>
<td>Mean</td>
<td>Median</td>
<td>Std. dev.</td>
</tr>
<tr>
<td>Checking deposits (bn. R$)</td>
<td>21.1</td>
<td>21</td>
<td>5.5</td>
<td>0.4</td>
<td>0.09</td>
<td>1</td>
</tr>
<tr>
<td>Saving deposits (bn. R$)</td>
<td>117.3</td>
<td>117.3</td>
<td>21.7</td>
<td>1.3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Time deposits (bn. R$)</td>
<td>35.1</td>
<td>34.4</td>
<td>7.6</td>
<td>3.4</td>
<td>1.1</td>
<td>8.1</td>
</tr>
<tr>
<td>Total loans (bn. R$)</td>
<td>58.5</td>
<td>58.7</td>
<td>11.6</td>
<td>2.2</td>
<td>0.6</td>
<td>4.3</td>
</tr>
<tr>
<td>Total financing (bn. R$)</td>
<td>5.5</td>
<td>5.5</td>
<td>5.1</td>
<td>0.8</td>
<td>0.08</td>
<td>2.3</td>
</tr>
<tr>
<td>Total assets (tn. R$)</td>
<td>2.9</td>
<td>2.8</td>
<td>2.4</td>
<td>0.1</td>
<td>0.02</td>
<td>0.3</td>
</tr>
<tr>
<td>Checking deposits (% in total)</td>
<td>12</td>
<td>12</td>
<td>3.3</td>
<td>23</td>
<td>8.1</td>
<td>33</td>
</tr>
<tr>
<td>Saving deposits (% in total)</td>
<td>67</td>
<td>67</td>
<td>10</td>
<td>6.2</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Time deposits (% in total)</td>
<td>20</td>
<td>20</td>
<td>5.4</td>
<td>71</td>
<td>90</td>
<td>35</td>
</tr>
<tr>
<td>Observations (branch×month)</td>
<td>8,250</td>
<td></td>
<td></td>
<td>18,134</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel A: Before Pix launch (ESTBAN)

Panel B: After Pix launch (ESTBAN)

Note: This table provides descriptive statistics for the bank data used in the main analysis of the paper. Panel A shows statistics for September and October of 2020. Panel B provides means, medians, and standard deviations for November and December 2020. The table splits the sample of banks into large and small. Large banks are defined as intermediaries with more than 50 million depositors.
will probably gain even more market share. However, suppose a centralized agency designs IPS, and all banks in the economy have access to it. In that case, convenience difference decreases, thus, creating competition for large banks from smaller banks. I then hypothesize that Pix launch reduced deposit market concentration in Brazil despite the fact that large banks usually adopt payment technologies faster than small banks. In other words, I aim to show that Pix leads to a relative inflow of checking deposits of small banks.

However, there are two potential channels through which Pix can impact deposits. The first is the substitution from large to small bank deposits due to a reduction in convenience differences (an intensive margin), and the second is an inflow of new depositors – people who used to be unbanked (extensive margin). The second effect can be equally significant, especially during the COVID-19 pandemic, since Pix allowed households to pay for many services they could only pay in physical cash before. I hypothesize that the extensive margin is more prevalent in concentrated areas where the unbanked population has few options. In that case, such areas can become even more concentrated.

To test the hypotheses, I limit the sample to start in October 2020 and end in December 2020 (months around the introduction of Pix). I then construct a measure of deposit market power – HHI defined in (1). I normalize HHI and log of Pix value of transactions to use them in interaction terms. The regression specification is

\[
\log D_{imt} = \delta \cdot \log Pix_{mt} \cdot S_i + \gamma X_{imt} + \theta_t + \alpha_i + \eta_{mt} + \varepsilon_{imt}
\]

where \(D_{imt}\) are deposits of bank \(i\) in municipality \(m\) at time \(t\), \(Pix_{mt}\) are the value of Pix transactions in municipality \(m\) at time \(t\), \(S_i\) is an indicator equal to 1 for small banks that

18I show it for Boleto Bancário in Appendix D.6 and for Swish in Sweden in Appendix D.7. Specifically, the introduction of Boleto led to more concentrated deposit markets in Brazil. Interestingly, Swish did not have a huge impact on deposit market concentration, possibly because initially, it was not offered as a means of payment.

19Pix can still increase deposits in all banks through substitution from physical currency, so relative inflow of deposits of small banks means that deposits of small banks increased more than deposits of large banks.
I define as banks having more than 50 million depositors, X_{int} is a vector of controls, θ_t and α_i are time and bank fixed effects, η_{int} are municipality-time fixed effects.

Column 1 of Table 4 shows the results. The introduction of Pix significantly negatively impacts the checking deposits of large banks relative to the deposits of small banks. Specifically, a one s.d. increase in the value of Pix transactions (roughly 100% rise) leads to a 3% increase in deposits of small banks relative to large banks. I also condition for HHI in the regressions and include interactions with it in Appendix D.11.\(^20\)

Checking deposits are directly impacted by Pix because to transact Pix, clients should use their checking accounts. I then check if Pix significantly impacts saving and time deposit composition by estimating (2) for saving and time deposits. Columns 2-3 of Table 4 contains the results. I find that doubling of Pix transactions leads to an increase in saving deposits of small banks by 3.2% more than in saving deposits of large banks. Time deposits of small banks increase by 4.3% more than time deposits of large banks.

The intuition behind an increase in time deposits is as follows. Time deposits of small banks pay higher interest rates than time deposits of large banks. However, depositors, on average, prefer accounts in large banks since they provide better payment convenience. When Pix is introduced, small banks’ payment convenience increases, so having a time account at a small bank does not incur large convenience costs; hence, households increase their demand for time deposits.

In Table 4, standard errors are clustered at the municipality level to account for potential correlation between the residuals within the same municipality (Petersen (2009); Abadie, Athey, Imbens, and Wooldridge (2022)). The correlation between the residuals across municipalities is also possible, and it would require clustering standard errors at the time level. Since my sample in the regressions includes only three months pre-Pix and three after, clusterization can bias standard errors (Bertrand, Duflo, and Mullainathan

\(^{20}\)I find that first, municipalities with higher market power generally have fewer deposits, consistent with the literature. Second, large banks lose checking deposits relative to small banks only in more competitive areas. In contrast, there is an increase in deposits of large banks compared to small banks in municipalities with more concentrated deposit markets. Since large banks have more deposit holding than small banks, it is still true that their deposits increased after the introduction of Pix.
Table 4: Impact of Pix on Bank Deposits

\[\log D_{imt} = \delta \cdot \log \text{Pix}_{imt} \cdot S_i + \gamma X_{imt} + \theta t + \alpha_i + \eta_{imt} + \varepsilon_{imt} \]

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Checking deposits (1)</th>
<th>Saving deposits (2)</th>
<th>Time deposits (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pix \cdot Small</td>
<td>0.030***</td>
<td>0.032***</td>
<td>0.043***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Bank FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Muni \times Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>32,097</td>
<td>32,097</td>
<td>32,097</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.882</td>
<td>0.961</td>
<td>0.923</td>
</tr>
</tbody>
</table>

Note: This table provides results of estimation of equation (2). The first column corresponds to checking deposits. Column 2 shows results for saving deposits. Column 3 corresponds to time deposits. Standard errors are clustered at the municipality level and displayed in parentheses. Bank, time, and municipality-time fixed effects are included. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

(2004). In Appendix D.12, I follow Bertrand, Duflo, and Mullainathan (2004) and bootstrap standard errors. I also include municipality fixed effects to account for regional unobservables.

4.2 Pix and deposit market concentration

Next, I directly test if Pix impacts HHI in future periods. Although the results in Table 4 suggest that small banks gained market power relative to large banks, the table does not reveal if this is generally true in the entire distribution of retail deposits. To test it, I run the following regressions:

\[HHI_{m,t+s} = \theta \text{PixPerCap}_{mt} + \delta HHI_{m,t} + \gamma X_{mt} + \eta_{mt} \] (3)

where I consider different values of \(s \) – from five months before to five months after \(t \). PixPerCap_{mt} is Pix transactions per person in municipality \(m \) at month \(t \). Controls
include demographic variables.

Figure 3 presents the results and pre-trends. There is a significant and persistent decline in deposit market concentration in Brazil after the introduction of Pix. The drop is small in the first few months but becomes sizable afterward. The results are consistent with findings in Table 4 and indicate that deposit markets became more competitive since Pix was launched, primarily because households opened relatively more deposit accounts at smaller banks than at larger banks. In Section 6.1 of the robustness tests, I also show that the change in market concentration is associated with flows of deposits within the banking sector rather than with openings of new branches.

One concern remains that HHI does not fully capture sources of banks’ market power. For example, payment convenience, online banking, and other factors can provide large banks with market power even in non-concentrated markets (Drechsler, Savov, and Schnabl (2017)). In Section 6.2, I use deposit flow betas as a measure of market power and show that my main results hold – small banks gain significant deposit market power relative to large banks as a result of Pix launch.

4.3 Pix and bank lending

Pix leads to an increase in bank deposits, especially for smaller banks. In Brazil, deposits are the main funding source for banks to lend to companies and households. Banks can originate two types of loans – traditional ones and financing. Traditional loans pay higher interest and originate without a specific purpose, whereas financing is usually provided for a predetermined purpose, and its interest rate is lower. In other words, financing is generally safer but less profitable, while banks make their profits mainly on loans while incurring risks.

In this section, I ask how Pix impacts loans and financing. Since Pix lead to an inflow of deposits (especially time deposits), it should also boost lending and financing. I thus
Figure 3: Impact of Pix on Deposit Market Concentration

\[HHI_{m,t+s} = \theta \text{PixPerCap}_{mt} + \delta HHI_{m,t-1} + \gamma X_{mt} + \eta_{mt} \]

\(\text{Note: } \) This figure plots results of estimation of equation (3). The vertical axis corresponds to \(\theta \) – sensitivity of future deposit market concentration to per capita Pix transactions. The horizontal axis corresponds to months since \(t \). Blue dots are coefficients, whereas grey lines are 95% confidence intervals constructed by clusterization on the municipality level.

estimate the following regression:

\[
\log Y_{imt} = \delta \cdot \log \text{Pix}_m \cdot S_i + \gamma X_{imt} + \theta_i + \alpha_i + \eta_{mt} + \omega_{imt}
\]

(4)

where \(Y_{imt} \) are either loans or financing of bank \(i \) in municipality \(m \) at month \(t \). Control variables include deposits, demographic and economic controls, and fixed effects. I also directly test how the part of deposits predicted by Pix launch impacts loans by running 2SLS regression with Pix as an instrument. I leave these results to robustness tests in Section 6.
Table 5: Impact of Pix on Loans, Financing, and Alternative Funds

\[\log Y_{int} = \delta \cdot \log Pix_{int} \cdot S_i + \gamma X_{int} + \theta t + \alpha_i + \eta_{int} + \alpha_{int} \]

<table>
<thead>
<tr>
<th></th>
<th>Loans (1)</th>
<th>Financing (2)</th>
<th>Alternative funding (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pix \cdot Small</td>
<td>0.005 (0.004)</td>
<td>0.019** (0.008)</td>
<td>-0.198*** (0.017)</td>
</tr>
</tbody>
</table>

Bank FE | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes |
Muni \times Time FE | Yes | Yes | Yes |
Controls | Yes | Yes | Yes |
Observations | 32,097 | 32,097 | 27,840 |
R^2 | 0.928 | 0.949 | 0.733 |

Note: This table provides results of estimation of equation (4). Column 1 shows results for traditional loans. Column 2 shows results for financing. Column 3 presents results for reserves. Standard errors are clustered at the municipality level and displayed in parentheses. Bank, time and municipality-time fixed effects are included. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

Columns 1 and 2 of Table 5 present the results. Surprisingly, large banks do not lend less than small banks but originate less financing due to several potential reasons. First, large banks have more stable lending relationships and access to secondary markets, which allows them to lend more in general if they have additional funds. Second, they switch from financing to loans to increase their interest gains. Finally, large banks can change the composition of funds used for lending. Retail deposits are insured, which makes them the safest and the most reliable source of financing (Whited, Wu, and Xiao (2022)). Since large banks lose retail deposits relative to smaller banks, but they still do not cut relative lending, it is possible that they increase alternative sources of financing.

Column 3 of Table 5 presents the result of the estimation of the effect of Pix on alternative sources of financing. Alternative sources of financing include net interbank borrowing, payment orders, checks, net foreign positions, etc. Naturally, large banks have better access to such funds and use them to finance loans. The results reveal that, indeed, large banks increase alternative funding after the introduction of Pix. The
evidence suggests that larger banks are still able to finance their loans as before because they switch financing. However, retail deposit financing is the safest since deposits are insured. In other words, large banks choose riskier and less stable funding after the Pix launch, consistent with seemingly riskier loan portfolios (i.e., more loans and less financing). Appendix D.2 shows that stock returns of large banks drop in the one-month window around Pix introduction, potentially reflecting that large banks became more prone to runs.

To better address how banks choose their rates after the Pix launch, one I check how deposit rates changed. Large banks in Brazil generally pay lower deposit rates, since they can attract deposits through payment or service convenience. Small banks, in contrast, have to pay higher deposit rates to attract clients. I collect data on interest expense from the Central Bank of Brazil and compute proxies for deposit rates in two ways. First, I divide interest expense by total deposits. Second, I use time deposits as a denominator, because banks are generally not allowed to pay interest above regulated on saving and checking accounts. I estimate a version of (4) with deposit rates and also two types of personal loan rates as a dependent variable: public and private payroll loans.

Table 6 shows the results. Following the introduction of Pix, small banks reduce their deposit rates relative to large banks. Specifically, a one standard deviation increase in the value of Pix transaction leads to a 1.4 p.p. decline in deposit rates of small banks relative to large banks. The finding is consistent with the hypothesis that deposit market in Brazil became more competitive after Pix – small banks can afford paying lower rates to attract depositors. Loan rates of small banks also decline relative to large banks, indicating changes to the funding costs – small banks’ costs of financing loans (time deposits) decline.

Evidence in this Section shows that the launch of Pix leads to an increase in checking, saving, and time deposits of smaller banks relative to larger banks. Moreover, deposit

\footnote{Figure A.3 in Appendix shows that the net interest margin in Brazil has been stable, also indicating significant deposit franchise value of Brazilian banks.}
Table 6: Impact of Pix on Deposit and Loan Rates

\[\text{IntRate}_{it} = \delta \cdot \log \text{Pix}_{mt} \cdot S_i + \gamma X_{int} + \theta t + \alpha_i + o_{int} \]

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Deposit rates (1)</th>
<th>Public loans (2)</th>
<th>Private loans (3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pix</td>
<td>-2.894</td>
<td>-3.523</td>
<td>0.021***</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(1.881)</td>
<td>(2.671)</td>
<td>(0.003)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Pix · Small</td>
<td>-1.372***</td>
<td>-1.365***</td>
<td>-0.047***</td>
<td>-0.016***</td>
</tr>
<tr>
<td></td>
<td>(0.099)</td>
<td>(0.166)</td>
<td>(0.000)</td>
<td>(0.001)</td>
</tr>
</tbody>
</table>

Denominator | All deposits | Time deposits | – | – |
Bank FE | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes |
Controls | Yes | Yes | Yes | Yes |
Observations | 18,247 | 18,196 | 35,256 | 34,805 |
R² | 0.122 | 0.963 | 0.932 | 0.974 |

Note: This table provides results of estimation of the effect of Pix on deposit rates and personal loan rates. Column 1 shows results for deposit rates computed as a interest expense divided by total deposits, while Column 2 uses time deposits as a denominator. Column 3 corresponds to public payroll loans. Column 4 represents private payroll loans. Standard errors are clustered at the municipality level and displayed in parentheses. Bank and time fixed effects are included. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

market concentration declines steadily over the next five months since the launch of Pix. As a result, banks start lending more – notably, smaller banks lend even in concentrated areas to make larger profits, while larger banks cut financing and lend more. Since deposit markets become more competitive, I also find a reduction in deposit rates of small banks relative to large banks.

5 Identification using COVID-19 restrictions

The paper’s main results suggest that the introduction of Pix has a positive and lasting effect on deposit market competition. However, I still need to provide causal evidence that Pix usage increases competition for deposits and deposits themselves. In this section, I estimate the causal effect of Pix on deposits and local deposit market concentra-
tion using a heteroskedasticity-based identification strategy, following Rigobon and Sack (2003), Rigobon and Sack (2004), and Hébert and Schreger (2017).

5.1 Identification concern

I first set up the problem through the lens of a simultaneous equation problem following Rigobon and Sack (2004). For notational simplicity, I drop control variables and fixed effects from equations in the text, but I include them in empirical tests. I describe the equations and identification strategy for HHI, but the same sets of equations apply to deposits. The model is

\[P_{ix_{mt}} = \delta HHI_{mt} + \gamma F_{mt} + u_{mt} \]
\[HHI_{mt} = \alpha P_{ix_{mt}} + \gamma F_{mt} + \varepsilon_{mt} \]

where \(F_{mt} \) is an unobservable single factor that moves both Pix and HHI. \(u_{mt} \) and \(\varepsilon_{mt} \) are uncorrelated shocks to Pix and HHI, respectively.

I have already shown that Pix impact HHI in Figure 3. In other words, \(\alpha \) in (6) is significant. I next show that \(\delta \) in (5) is also significant by estimating a direct regression of per capita Pix transactions on HHI. I include demographic and economic controls in the regression. Table 7 shows that Pix is used more per capita in municipalities with more competitive deposit markets. Column 3 of the same Table reveals that this was the case since the first month of Pix existence. Hence, there is a reverse causality in the analysis of previous sections – Pix impacts deposit market concentration, and deposit market concentration impacts Pix usage.

The second source of bias is illustrated by the equations (5)-(6) themselves. They include unobserved factor \(F_{mt} \), thus creating an omitted variable bias. For example, a more reliable business environment in the municipality can promote more banking competition and, at the same time, more spending. Since Pix dominates retail payment markets in Brazil, Pix transactions should be larger in such municipalities.

26
Table 7: Impact of Local Deposit Market Power on Pix

\[\text{PixPerCap}_{mt} = \delta HHI_{mt} + \gamma X_{mt} + \theta_t + u_{mt} \]

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHI</td>
<td>-0.107***</td>
<td>-0.107***</td>
<td>-0.044***</td>
</tr>
<tr>
<td>(0.012)</td>
<td>(0.012)</td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>Time FE</td>
<td>No</td>
<td>Yes</td>
<td>Cross-Section</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>6,360</td>
<td>6,360</td>
<td>3,179</td>
</tr>
<tr>
<td>R²</td>
<td>0.239</td>
<td>0.239</td>
<td>0.169</td>
</tr>
</tbody>
</table>

Note: This table provides results of estimation of equation (5). Columns 1 and 2 show results for all available months when Pix was transacted. Column 3 provides cross-sectional results for November 2020. Standard errors are clustered at the municipality level and displayed in parentheses. Time fixed effects are included in the panel regression. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

5.2 Identification strategy

I exploit an instrumental variable approach to estimate a causal effect of Pix on bank deposits and market power. Specifically, I use municipality-level data on COVID-19 restrictions in Brazil that are constructed by de Souza Santos et al. (2021) in collaboration with the Brazilian Confederation of Municipalities. The authors surveyed mayors of most Brazilian municipalities and collected information about types of restrictions and their easing. I use the easing of COVID-19 restrictions as instrument for Pix usage in the analysis.\(^{22}\) I treat municipalities that eased COVID restrictions as treated and those that did not as control.

The key identifying assumption is that shocks \(u_m\) in (5) are easings of COVID restrictions. In other words, two conditions must be satisfied to make causal statements – relevance condition, i.e., easing of COVID-19 restrictions should increase usage of Pix, and exclusion restriction, i.e., easing COVID restrictions can affect deposits and mar-

\(^{22}\)To remove municipalities that never imposed COVID restrictions, I drop municipalities without mask mandates in place as of May 2020. Such municipalities comprise less than 5% of the sample.
ket power only through their impact on Pix. The relevance condition is likely satisfied since Pix dominates the retail payment market, and easing of COVID restrictions allows households to spend more (for example, they can freely go to restaurants), and hence, they should increase Pix transactions.23

The exclusion restriction implies that COVID restrictions can affect deposit market power changes from October 2020 to November 2020 only through the impact on Pix. COVID restrictions are eased by September 2020 and hence, the exclusion restriction can be violated only if the treatment has a two-month delayed impact on deposit market concentration. One concern might be the COVID stimulus; however, it was paid mainly through government-owned Caixa Economica and Banco do Brasil, which are both in the sample of large banks (hence, if anything, COVID stimulus would understate my results). The limitation of the approach is an implicit assumption that COVID restrictions did not change from September to November, but since COVID cases were rising at the time, municipalities likely imposed more restrictions, which should understate my findings. I conduct several tests to demonstrate that initial COVID-19 restrictions did not have a significant impact on deposits in Appendix.

However, the standard IV approach may seem too restrictive since it assumes that the variance of Pix shocks is not affected by the easing of COVID-19 restrictions. For example, lifted restrictions allow travel, but not all households are comfortable spending money on travel, especially when COVID-19 is still spreading. My preferred specification uses a heteroskedasticity-based identification strategy (Rigobon and Sack (2003, 2004)).24 Specifically, the identifying assumption does not require the complete absence of common and idiosyncratic shocks during the easing of COVID restrictions. Instead, I assume that the variance of F_{mt} and ε_{mt} are the same in municipalities that eased COVID restrictions and in ones that did not, whereas the variance of u_{mt} is higher in municipalities that eased COVID restriction. In other words, the assumption requires the variance of shocks to Pix to change due to eased COVID restrictions, but the variance

23The first-stage regression formally illustrates this in Appendix D.9.

24I show the results of standard IV in Appendix D.10.
of shocks to deposits and HHI to stay unchanged.

The first assumption regarding the variance of shocks to Pix only requires that the variance of Pix in affected municipalities is larger than in other municipalities in November, since the variance of Pix in October is zero. The second assumption is an analog of the exclusion restriction and implies that all changes that are different for affected municipalities occurred before October 2020. I also conduct a cross-sectional analysis without conditioning on October information in the Appendix D.3. In addition, Appendix D.5 includes the results with bootstrapped standard errors in the second-stage regression, consistent with Hébert and Schreger (2017) suggestions. The details for the heteroskedasticity-based identification strategy are contained in the Appendix C.

The details of the estimation can be found in Rigobon and Sack (2004). Results of the first-stage estimation are in Appendix D.9. The second-stage regression is

\[
\log D_{imt} = \delta \cdot \log \hat{Pix}_{mt} \cdot S_i + \gamma X_{imt} + \eta_{mt} + \varepsilon_{imt}
\]

(7)

Table 8 show the results. As in the OLS estimates, increase in the value of Pix transactions boosts checking and time deposits of small banks relative to large banks. In contrast to the OLS results, I find that loans of small banks also increases relative to large banks, indicating possible downward bias in the benchmark results. I also test if introduction of Pix causes a decrease in deposit market concentration. Specifically, I run the following second-stage regression:

\[
HHI_{m,t+s} = \theta \hat{PixPerCap}_{mt} + \delta HHI_{m,t} + \gamma X_{mt} + \eta_{mt}
\]

(8)

I analyze only the next five months after Pix launch and also plot pre-trends. Figure 4 plots the estimation results along with the 95% confidence intervals. I find that the introduction of Pix significantly negatively affected deposit market concentration. Local deposit market HHI declines steadily over at least five months after the launch of Pix. Hence, there is a causal impact of Pix on the local deposit market power.
Figure 4: Impact of Pix on Deposit Market Concentration: IV with Easing of COVID Restrictions

\[HHI_{m,t+s} = \theta \widehat{PixPerCap}_{mt} + \delta HHI_{m,t} + \gamma X_{mt} + \eta_{mt} \]

Note: This figure plots the results of the second stage in the IV estimation of equation (8). The vertical axis corresponds to \(\theta \) – sensitivity of future deposit market concentration to per capita Pix transactions predicted by the COVID-19 restrictions easing using heteroskedasticity-based estimation. The horizontal axis corresponds to months since Pix launch. Blue dots are coefficients, whereas grey lines are 95% confidence intervals constructed by clusterization on the municipality level.
Table 8: Impact of Pix on Deposits and Loans: Interactions with Large Dummy

\[
\log D_{int} = \delta \cdot \log \hat{\text{Pix}}_{int} \cdot S_i + \gamma X_{int} + \eta_{int} + \varepsilon_{int}
\]

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Checking deposits</th>
<th>Saving deposits</th>
<th>Time deposits</th>
<th>Total loans</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Pix · Small</td>
<td>0.033***</td>
<td>0.004</td>
<td>0.150***</td>
<td>0.037***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.011)</td>
<td>(0.006)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Muni × Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>7,123</td>
<td>7,123</td>
<td>7,123</td>
<td>7,123</td>
</tr>
<tr>
<td>R²</td>
<td>0.486</td>
<td>0.402</td>
<td>0.027</td>
<td>0.254</td>
</tr>
</tbody>
</table>

Note: This table provides results of the second stage in the IV estimation of equation (8), including interactions with the large bank dummy. The easing of COVID-19 restrictions in Brazil is used as an instrument for Pix usage. The specification uses a standard IV approach. Column 1 presents results for checking deposits. Column 2 presents results for saving deposits. Column 3 shows results for saving deposits. Column 4 corresponds to total loans. Municipality-time fixed effects are included. Standard errors are clustered at the municipality level and displayed in parentheses. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

Finally, I estimate IV regressions to test how Pix impacts deposits overall. Table 9 shows the results for deposits and total loans. As can be seen, all types of deposits increased due to the introduction of Pix. Specifically, doubling in Pix increases checking deposits by 3.7%, saving deposits by 1.4%, and time deposits by 4%. All numbers are larger than the ones in OLS regressions, confirming a potential bias in simple regressions. Total loans also increase in municipalities with more Pix usage, indicating a rise in aggregate lending caused by the introduction of the instant payment system. The income increase does not drive the results due to relaxed COVID restrictions. Appendix D.13 shows that Pix usage does not predict increase in municipality-level GDP per capita.

The heteroskedasticity-based identification with panel structure allows me to address several identification concerns. First, if COVID-19 restrictions impacted unobservables or deposits, we should see an increase in the shock variance in October. Since I condition on the October information, it is enough to assume that the variance of deposit shocks and unobservables does not vary across municipalities that lifted restrictions and other
Table 9: Impact of Pix on Deposits and Loans: IV with Easing of COVID Restrictions

\[
\log D_{mt} = \delta \log P_ix_{mt} + \theta X_{mt} + o_{mt}
\]

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Checking deposits</th>
<th>Saving deposits</th>
<th>Time deposits</th>
<th>Total loans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Pix</td>
<td>0.037***</td>
<td>0.014***</td>
<td>0.040***</td>
<td>0.024***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.001)</td>
<td>(0.007)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>4,488</td>
<td>4,488</td>
<td>4,488</td>
<td>4,488</td>
</tr>
<tr>
<td>R²</td>
<td>0.697</td>
<td>0.699</td>
<td>0.449</td>
<td>0.604</td>
</tr>
</tbody>
</table>

Note: This table provides results of the second stage in the IV estimation of equation (8). The easing of COVID-19 restrictions in Brazil is used as events. The specification uses a heteroskedasticity-based identification strategy conditional on the information in October 2020. Column 1 presents results for checking deposits. Column 2 presents results for saving deposits. Column 3 shows results for saving deposits. Column 4 corresponds to total loans. Standard errors are clustered at the municipality level and displayed in parentheses. Time fixed effects are included in the panel regression. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

Another concern is a missing intercept problem. The analysis in Section 4 allowed me to compare large and small deposits only, so I could not imply how Pix impacted aggregate deposits. In this section, I directly tested the impact of Pix on deposits for all banks and showed that Pix leads to an increase in checking, saving, and time deposits. However, the cross-sectional analysis compares regions to one another – hence, it is not clear if Pix generally leads to an increase of deposits. Although this is a limitation of the cross-sectional analysis, I provide two arguments of why it is unlikely that total deposits declined. First, Pix has several advantages relative to cash, and aggregate data shows that Pix has become a dominant means of retail payments in Brazil. Second, Figure A.2 in Appendix shows that all three types of deposits increased after November 2020 despite COVID-19 shocks (which, if anything, harmed deposits in Brazil according to D.8). Taken together, two arguments above make the assumption that cross-sectional missing intercept bias is downward plausible.
One may argue that COVID-19 restrictions are instruments for the usage of Pix, but the proposed channel of the impact of instant payments on deposit market concentration goes through the access to Pix. However, COVID restrictions preclude certain types of spending for which Brazilians use Pix, such as retail payments or plane tickets. During COVID restrictions, households tend to spend money on online platforms where there is generally uniform pricing and high credit card benefits. That is why, Pix is used more in areas that eased COVID-19 restrictions. However, in Appendix D.14, I try a different instrument – access to high-speed internet which naturally implies access to cashless payment applications. I document economically and statistically comparable results.

6 Robustness tests

In this section, I conduct several robustness tests to strengthen the results of the analysis further. First, I argue that the change in market power is due to the substitution between deposits of large and small banks rather than the opening of new branches. Second, I show that the main results hold if I use deposit betas as a measure of deposit market power. Finally, I study a special type of IPS – CBDC – to show that my main conclusions hold for countries that introduced CBDCs.

6.1 New bank branches

Reduction in deposit market power can be either on the intensive or extensive margin. In other words, it is possible for households to move their deposits from large banks to small banks or for banks to open new branches in a less competitive environment. I show that Pix launch did not lead to the opening of new branches in Brazil. I run the following set of regressions:

\[BrNum_{m,t+s} = \theta PixPerCap_{mt} + \delta BrNum_{m,t-1} + \gamma X_{mt} + \eta_{mt} \]

(9)
Figure 5: Impact of Pix on Number of Bank Branches

\[BrNum_{m,t+s} = \theta \text{PixPerCap}_{mt} + \delta BrNum_{m,t-1} + \gamma X_{mt} + \eta_{mt} \]

Note: This figure plots results of estimation of equation (9). The vertical axis corresponds to \(\theta \) – sensitivity of the future number of branches to per capita Pix transactions. The horizontal axis corresponds to months since \(t \). Blue dots are coefficients, whereas grey lines are 95% confidence intervals constructed by clusterization on the municipality level.

where \(BrNum_{m,t+s} \) is a number of bank branches in municipality \(m \) \(s \) months after the observation date.

Figure 5 presents the results. The number of branches did not increase in municipalities after the introduction of Pix. Moreover, there is a slight decline in the number of branches, potentially indicating the COVID effect on banking. Hence, my main results are not driven by the fact that banks opened new branches and thus increased deposit market competition.
6.2 Deposit betas as a measure of market power

In the paper, I use deposit market HHI as a measure of deposit market concentration. However, the literature argues that there can be alternative sources of market power for banks (Drechsler et al. (2017, 2021)). One source of market power can come from the payment methods, so analyzing simply deposit market concentration may understate the full effect of Pix on market power.

In this section, I follow the literature and construct the measure of deposit market power – deposit flow beta. Specifically, for each bank in the sample, I compute sensitivities of deposits to changes to central bank policy rates, Selic, in a ten-month rolling window controlling for bank assets and macro variables. For example, the deposit beta of Caixa Economica for October 2020 is the sensitivity of deposits of Caixa Economica to changes in the policy rate from January to October 2020. I compute deposit betas for up to seven months after the introduction of Pix. Higher deposit beta implies lower deposit market power.

The regression specification is the following:

$$b_{it} = \delta \cdot \log Pix_{mt} \cdot S_i + \alpha HHI_m + \beta Y_{int} + \gamma X_{int} + \theta_t + \varepsilon_{int}$$ \hspace{1cm} (10)

where b_{it} is deposit beta of bank i at time t. I run the regression for time and saving deposit betas because these are the most popular interest-bearing deposits in Brazil.

Table 10 shows the results. Deposit betas increase significantly for larger banks in municipalities with more Pix transactions. This is true for both saving and time deposits. Since deposit beta is a direct measure of market power, the results imply that large banks lose their deposit market power to small banks as a result of Pix launch. There could be at least two interpretations. First, as the analysis above suggests, deposit market concentration declines – households prefer smaller bank deposits to larger bank deposits.

25 Papers that compute deposit betas are Drechsler, Savov, and Schnabl (2017, 2021); Supera (2021); Sarkisyan and Viratyosin (2022).

26 It is important to mention here that banks in Brazil cannot pay interest on saving deposits above the regulated number. The same law does not apply to time deposits.
Table 10: Impact of Pix on Deposit Betas

\[b_{it} = \delta \cdot \log \text{Pix}_{mt} \cdot S_i + \alpha \text{HHI}_m + \beta Y_{int} + \gamma X_{imt} + \theta_t + \varepsilon_{int} \]

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Saving deposits</th>
<th>Time deposits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Pix</td>
<td>0.004***</td>
<td>0.042***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>HHI</td>
<td>0.000</td>
<td>0.001***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Small</td>
<td>−0.015***</td>
<td>−0.015***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Pix · Small</td>
<td>−0.022***</td>
<td>−0.024***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time FE</th>
<th>No</th>
<th>Yes</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>297,654</td>
<td>297,654</td>
<td>297,654</td>
<td>297,654</td>
</tr>
<tr>
<td>R²</td>
<td>0.043</td>
<td>0.211</td>
<td>0.008</td>
<td>0.024</td>
</tr>
</tbody>
</table>

Note: This table provides results of estimation of equation (10). The dependent variable is deposit beta – the sensitivity of deposits to changes to central bank policy rates, Selic, in a ten-month rolling window controlling for bank assets and macro variables. Columns 1 and 2 include saving deposit betas, while columns 3 and 4 include time deposit betas. Standard errors are clustered at the municipality level and included in the parentheses. Time fixed effects are included. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

Second, payment convenience provides an important source of market power to large banks, and instant payment systems allow small banks to compete. The two forces likely impact each other – since small banks offer better payment convenience, they gain significant market power relative to large banks.

6.3 Central bank digital currency

The analysis so far has focused on bank-dependent instant payment platforms. Among others, central bank digital currency (CBDC) is the hotly discussed instant payment system. CBDC is supposed to be a legal tender and has similar properties to cash. It will also share certain properties with dollar-denominated stablecoins such as USDT. For ex-
ample, according to technical reports (Duffie, Mathieson, and Pilav (2021)), CBDC will operate on distributed ledger technology (DLT). CBDCs are instant payment platforms but have two crucial features that Pix does not. First, CBDCs can be used by the unbanked population. Second, since CBDCs operate on blockchain, they can be used to make cross-border transfers.

Nine out of ten central banks consider CBDC. However, most central banks have not yet developed their CBDC. The Bahamas became the first country to make its CBDC a legal tender in 2021. The second country is Nigeria. Several East Caribbean countries launched CBDC in 2022. A few countries, including Uruguay, Canada, and China, have developed CBDC pilots and conducted stress tests. Other countries are still at either the research or proof of concept stage. Hence, we still have very few data points to analyze the consequences of the introduction of CBDC. In this section, I provide evidence on how CBDC impacted the economy and household behavior in Nigeria. I first describe the data collection process, then present the findings.

6.3.1 Data

I hand-collect banking data from Nigeria – one of the first countries to issue CBDC. Nigeria has 20 commercial banks, and all of them distribute CBDC. There are quarterly financial reports available for the post-CBDC period for 9 of them – Access Bank, Ecobank Nigeria, Fidelity Bank, Guarantee Trust Bank, Stanbic IBTC, Union Bank of Nigeria, United Bank for Africa, Wema Bank, and Zenith Bank. I collect assets, deposits, loans, retained earnings, derivative holdings, cash, reserves, and investment securities from 2018 to current.

In Nigeria, using CBDC is straightforward: the Central Bank of Nigeria (CBN) launched the wallet app to hold e-Naira. Customers should register through their bank. Registering as a merchant to accept CBDC in the store is also possible. Unbanked

27 For details, see the Fed paper on CBDCs.
28 In Nigeria, although the unbanked population can use CBDC, there are fees in such cases.
29 See https://cbdctracker.org.
customers can also use e-Naira but have daily limits depending on their credit score. To accept e-Naira in stores, it is enough to have the app installed and connected to the bank account. As CBDC is distributed through banks and banks get fees from the government for transmitting it, they have incentives to advertise e-Naira. I also hand-collect data for Kenyan banks to compare Nigeria to a fairly similar African country that does not have CBDC.

6.3.2 Results

Electronic Naira was launched in October 2021; hence, I aim to analyze deposits around that time. One can worry that high levels of inflation can potentially explain an increase in deposits in Nigeria – In 2021, it peaked at 20%. That is why, instead of deposits, I plot the deposit-to-assets ratio. Figure 6 shows that deposits spiked relative to assets of commercial banks. Comparison to Kenya also confirms that the deposit-to-asset ratio in commercial banks has increased since October 2021.

I acknowledge that it is hard to provide causal evidence since there needs to be more evidence of the popularity of CBDC in Nigeria. Also, Nigeria is a country with a low financial literacy ratio. Both countries are hard to compare to the US or Europe. This is a severe external validity concern. However, the analysis above shows that the slow introduction of non-interest-bearing CBDC, preferably through banks, doesn’t lead to an outflow of deposits.

The evidence in this section suggests that CBDC should not necessarily lead to an outflow of deposits in economies with significant demand for cash. If it is intermediated, it incentivizes people (especially unbanked) to increase their deposit demand to use CBDC. In developing countries, CBDC may not cause any changes to the deposit demand since it slowly becomes popular. Overall, the results are consistent with the findings on Pix.
Figure 6: Deposits-to-assets in Nigerian and Kenyan Banks

Note: This figure plots deposit-to-assets ratios for Nigerian and Kenyan banks. Data is hand-collected from the financial reports of nine commercial banks in Nigeria and eight commercial banks in Kenya. The vertical black line corresponds to October 2021, when e-Naira was launched.

7 Deposit demand model estimation

The empirical results of the paper show that the introduction of instant payment systems available to all banks promotes more competitive deposit markets. Specifically, deposits of small banks increase relative to deposits of large banks. Nevertheless, there are several questions that reduced-form tests do not address. First, Table 6 indicates that banks change their interest rates in response to the launch of Pix, which in turn can affect the equilibrium choices of deposits. In other words, I so far have not separated the deposit demand component. I aim to do it by estimating a structural deposit demand model in the style of industrial organizations literature (Berry, Levinsohn, and Pakes (1995); Nevo (2001); Wang, Whited, Wu, and Xiao (2022)). Second, to estimate the deposit demand,
one needs interest rate data. I assume through the lens of the model that deposit rates are connected to loan rates which I have data on, so I am able to estimate the effect of deposit rates on deposit demand. Finally, the estimated model allows me to analyze welfare gains and study counterfactuals. In particular, I propose two counterfactual scenarios – one in which Pix is not introduced and another in which Pix is only offered by large banks. In the last subsection, I estimate the model for each region of Brazil separately.

7.1 Model

The infinite-horizon model features a mass W_t of households, each of which is endowed with one Brazilian real. Households can invest in deposits of any of the J banks in the economy or in cash. I follow Wang, Whited, Wu, and Xiao (2022) and assume that households can only choose one bank.\(^{30}\) I denote the set of options by $A^d = \{0, 1, ..., J\}$ where option 0 corresponds to cash. Since the households’ decision is static, I drop the time subscript. I treat the months as a market, not municipality-month pair, since the number of municipalities makes it computationally intensive to estimate the model otherwise.

Each bank j has certain bank-specific characteristics. First, each bank pays a deposit rate r_j.\(^{31}\) Second, banks have non-interest rate product characteristics, x_j. Third, some banks are large, and some are small, which captures households’ demand for large bank services (not necessarily limited to payment systems). I denote the dummy for large banks by ℓ_j. Finally, banks benefit from offering payment convenience, p_j, to households. I define p_j as a mean of the log value of transactions in Pix across municipalities where the bank has branches. The measure captures the exposure of banks’ clients to the Pix network.

\(^{30}\)This can be interpreted as many discrete choices for one household, so the assumption is without loss of generality.

\(^{31}\)Appendix E.3 provides estimates for the change in sensitivity of deposits to interest rates after the introduction of Pix.
Each household i chooses the bank $j \in A^d$ to maximize its utility:

$$\max_{j \in A^d} u_{i,j} = \alpha^d r_j + \beta^d p_j + \delta^d p_j \ell_j + \gamma^d x_j + \xi_j + \epsilon_{i,j}$$ \hspace{1cm} (11)$$

where ξ_j is a product-specific time-invariant characteristic (bank fixed effect) and $\epsilon_{i,j}$ is a relation-specific shock to the choice of the bank. For example, it can capture the geographic proximity to the bank j. I follow the literature and assume that the shock follows a generalized extreme-value distribution with the function $F(\epsilon) = \exp(-\exp(-\epsilon))$.

Parameter α^d captures the sensitivity to the interest rate r_j. Intuition and household finance theory suggest that when banks pay higher deposit rates, households should increase their demand, i.e., $\alpha^d \geq 0$. β^d is the sensitivity of depositors to the payment technology. δ^d is an additional sensitivity of depositors to the payment system if they choose deposits of large banks.\(^{32}\) The reduced-form estimates suggest that $\beta^d \geq 0$ and $\delta^d \leq 0$, so depositors like when the bank is offering the payment system, and they like it more if the bank offering payment systems is small.

The optimal choice of the household i is then defined as follows:

$$I^d_{i,j} = \begin{cases} 1, & \text{if } u_{i,j} \geq u_{i,k}, \quad j, k \in A^d \\ 0, & \text{otherwise} \end{cases}$$ \hspace{1cm} (12)$$

Household i chooses to invest its Brazilian real in the bank that gives them the largest utility. To compute the deposit share of each bank, I need to integrate (12). The assumption on the distribution of $\epsilon_{i,j}$ allows us to compute the integral in closed form and to show that the deposit share of bank j is

$$s_j^d(r_j^d) = \int I^d_{i,j} dF(\epsilon) = \sum_i \mu_i^d \frac{\exp(\alpha^d r_j + \beta^d p_j + \delta^d p_j \ell_j + \gamma^d x_j + \xi_j)}{\exp(\gamma^d x_c + \xi_c) + \sum_{n=1}^J \exp(\alpha^d r_n + \beta^d p_n + \delta^d p_n \ell_n + \gamma^d x_n + \xi_n)}$$ \hspace{1cm} (13)$$

\(^{32}\)Note that the dummy for large banks is not included in (11) since it is subsumed by the bank fixed effect ξ_j.\)
where μ_i^d is the fraction of total wealth held by household i.

I do not directly observe the deposit rate, r_j, in the data. To address the concern, I assume that each bank j has to run a specified risk-weighted capital ratio ζ_j, so that the leverage equation is

$$\frac{1}{1 + r_j^d} D_j = \zeta_j \frac{1}{1 + r_j^\ell} A_j$$

where r_j^ℓ are loan rates, D_j are deposits, and A_j are assets. Deposit and asset prices in the equation serve as Basel-type risk weights as suggested by Elenev, Landvoigt, and Van Nieuwerburgh (2021). Note that from equation (14) I can define $r_j = \log \frac{1}{\zeta_j} (1 + r_j^d)$.33 The number is known since I observe loan rates, assets, and deposits in the data.

7.2 Data and identification

I use equation (14) to back out deposit rates from data on loan rates, time deposits, and assets from the Central Bank of Brazil and ESTBAN, respectively. Although I cannot observe the deposit rates directly, the characterization and assumption that ζ_j does not change over time allow me to estimate the impact of deposit rates on deposit demand. I split banks into large and small based on the number of depositors as in Section 3. I construct the measure of Pix as a mean log of the value of Pix transactions across municipalities where bank j has branches. Finally, I include the number of branches of the bank and time fixed effects in non-interest characteristics following Wang, Whited, Wu, and Xiao (2022) and Whited, Wu, and Xiao (2022). Thus, the only unobservable in equation (13) is bank fixed effect, ξ_j. I solve for bank fixed effect using the nested fixed point procedure following Nevo (2001).

I estimate the deposit demand using GMM following the procedure described in Berry, Levinsohn, and Pakes (1995) (henceforth, BLP) and Nevo (2001). The market is

33I take the log for interpretation purposes. The results are robust to not taking logs. For interpretation, I assume that the capital ratio stays constant over time. The assumption is justified by Figures A.3 and A.4 in Appendix A, which show that banks’ net interest margins and capital ratios do not vary significantly over time.
Brazil as a whole, where each month constitutes a separate market. Separability and assumptions on distributions allow us to treat (13) as a logistic model with random coefficients.34

There are two key challenges in identifying the demand parameters in the model. First, deposit rates are correlated with the unobserved part of the deposit demand. In other words, there are confounding factors that can impact both deposit rates and demand for deposits. Moreover, deposit demand itself influences deposit rates. To address the challenge, I use supply shifters as proposed by Ho and Ishii (2011). Specifically, I use non-interest expenses related to the use of fixed assets and the provision for loan losses as instruments for interest rates. The identifying assumption is that the supply shifters impact banks’ deposit rate decisions but not deposit demand, conditional on controls. The exclusion restriction is likely satisfied, given that deposits in Brazil are insured.

The second challenge is that adoption of Pix is correlated with the deposit demand – a challenge described in detail in Section 5. As before, I use the easing of COVID-19 restrictions and demographic series as instruments for Pix adoption. Specifically, in the first stage, I regress Pix adoption on the dummy for the easing of COVID-19 restrictions and demographics, and then I use predicted Pix values in the BLP estimation. I cluster standard errors at the bank level to account for the predictability errors. The identifying assumption is similar to the one above – easing COVID restrictions can affect deposits and market power only through their impact on Pix adoption.

7.3 Estimation results

Table 11 shows the results. Column 3 displays the point estimates, and column 4 presents clustered standard errors. The estimate of the sensitivity to deposit rates implies that a one p.p. increase in deposit rates leads to a 0.8% increase in deposit shares, consistent with the fact that higher deposit rates increase deposit demand. Consistent with the

Table 11: Structural Estimation Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Estimate</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity to deposit rates</td>
<td>α^d</td>
<td>0.80***</td>
<td>(0.141)</td>
</tr>
<tr>
<td>Sensitivity to Pix</td>
<td>β^d</td>
<td>0.107***</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Additional sensitivity to Pix for large banks</td>
<td>δ^d</td>
<td>-0.023***</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td>2,097</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td>0.980</td>
<td></td>
</tr>
</tbody>
</table>

Note: This table provides results of structural estimation of equation (13). The method used is GMM following the random coefficient logit procedure described in Berry, Levinsohn, and Pakes (1995). The estimated time period is from January 2015 to December 2021. Bank and time fixed effects are included. Deposit rates are instrumented with supply shifters, and Pix adoption is instrumented with the easing of COVID-19 restrictions in Brazil, as well as demographic data. Standard errors are clustered at the bank level and displayed in Column 4 of the table. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

Reduced form evidence, the adoption of Pix increases deposit demand for all banks but less so for small banks. Specifically, a 1% increase in the value of Pix transactions leads to a 2.3% increase in deposit shares of small banks relative to large banks. Unlike the estimates in Section 4, this 2.3% is attributed to the change in deposit demand conditional on interest rate changes.

7.4 Welfare and counterfactuals

Structural estimation allows me to analyze the welfare implications of the introduction of instant payment systems. I use the average utility from equation (11) as a measure of welfare (surplus), and then I calculate welfare gains relative to two counterfactual scenarios. First, what would happen if Pix were never introduced? To answer the question, I fix all model estimates and assume that $\beta^d = \delta^d = 0$. In other words, even after November 2020, the deposit demand is fully defined by deposit rates, non-interest characteristics, and fixed effects. The second counterfactual is related to the set of participants of Pix. Most payment technologies are only offered by large banks or even created by large banks. The reason Pix promotes deposit market competition is that Pix is available to all banks in Brazil. What if only large banks had access to Pix? To
answer the question, I set $\beta^{cf} = \beta^d - \delta^d$ and $\delta^{cf} = 0$. In other words, I assume that large banks get all benefits from offering Pix.

Figure 7 shows the results. The dashed red line compares the benchmark model where all banks offer Pix with the scenario in which Pix were never introduced. The dash-dotted blue line compares the counterfactual where Pix is offered only by large banks with the scenario in which Pix were never introduced. The results indicate significant welfare gains from the introduction of Pix – households’ utility increases after October 2020 relative to the counterfactual scenario without Pix introduction. A comparison with the blue line shows that welfare gains would have been sufficiently lower (although still positive) if Pix were only available to large banks.

Note: This figure plots the welfare gain from the BLP estimation using two counterfactual scenarios. The dashed red line compares the benchmark model where all banks offer Pix with the scenario in which Pix were never introduced. The dash-dotted blue line compares the counterfactual where Pix is offered only by large banks with the scenario in which Pix were never introduced.
Counterfactuals also allow us to compare deposit market concentrations. I next plot HHI percentage gains to study how the introduction of Pix affected deposit market concentration and how it would be were Pix only available to large banks.

Figure 8 shows the results. The variable plotted is the percentage gain in the Herfindahl-Hirschman index. Panel (a) compares the benchmark model where all banks offer Pix with the scenario in which Pix were never introduced. The deposit markets are more concentrated when Pix is not introduced. Specifically, if Pix were never launched, HHI would be larger by 3% in November 2020 than it was in reality. By February 2021, HHI would be larger by 3.7%.

Panel (b) compares the counterfactual, where Pix is offered only by large banks, with the scenario in which Pix were never introduced. Deposit markets are much more concentrated if Pix is only offered by large banks. HHI is larger by 116% in November 2020 than it is under the ‘no Pix’ scenario. The results indicate that if Pix were designed analogously to most payment technologies that are created or accessed by just large banks, deposit markets would be severely concentrated.
7.5 Regional estimation

Baseline estimation in Table 11 assumes that all households have a similar choice set of banks. However, in reality, households that live in Brasilia would not consider banks in Rio. Hence, nation-level procedures can produce inaccurate estimates of elasticities (Koijen and Yogo (2019)). In this section, I address the issue by dividing Brazil into five greater regions and estimating the deposit demand separately for each region.

I split Brazil into five regions following IBGE – North, Northeast, Central-West, Southeast, and South. I estimate the model using BLP for each region of Brazil. Maps are plotted in Figure 9. As can be seen, there is a considerable variation across regions in Brazil. Still, national results hold on average. Higher deposit rates increase demand for time deposits, and more exposure to Pix leads to an increase in demand for all banks’ deposits, but the effect is generally lower for large banks. Appendix E contains more detailed results of the regional estimation. Specifically, estimators and standard errors are contained in Appendix E.1, and counterfactuals and welfare are in Appendix E.2.

8 Conclusion

To conclude, this paper provides evidence that the implementation of instant payment systems, such as Brazil’s Pix, can effectively foster competition in the deposit market, leading to increased deposits and loans. The study demonstrates that Pix’s introduction leads to higher deposit market competition, resulting in a surge of checking, saving, and time deposits, particularly in smaller banks. Consequently, this dynamic contributes to a decline in local deposit market concentration. Additionally, the analysis reveals a significant boost in lending supply following the launch of Pix. By examining a counterfactual scenario, I argue that deposit markets would have been more concentrated if Pix had never been introduced or had been limited to larger banks.

There are several possible ways to split Brazil into regions. My data allows me to estimate deposit demand at the municipality or state data. However, such granular divisions leave me little variation inside many municipalities or states. That is why I choose to analyze the regions.
Figure 9: Regional Estimation Results

(a) Sensitivity to Deposit Rates (b) Additional Sensitivity to Pix for Large Banks

Note: These maps provide results of structural estimation of equation (13) separately for each region. Regions are North, Northeast, Central-West, Southeast, and South. The method used is GMM following the random coefficient logit procedure described in Berry, Levinsohn, and Pakes (1995). The estimated time period is from January 2015 to December 2021. Bank and time fixed effects are included. Deposit rates are instrumented with supply shifters, and Pix adoption is instrumented with the easing of COVID-19 restrictions in Brazil, as well as demographic data.

These findings hold significant implications for the advancement of the economy through payment technologies. Enhanced competition in deposit markets has the potential to amplify the transmission channels of monetary policy, influencing the provision of credit. The prevailing market power of large banks has historically hindered the central bank’s ability to impact their interest rates despite changes in the policy rate. For instance, even when policy rates are high, large banks in the US seldom adjust their savings rates. Moreover, deposit market power shapes the lending policies of these larger banks. The increased competition stemming from smaller banks can incentivize larger institutions to respond more effectively to changing economic conditions.

Furthermore, this paper delves into the implications for consumer welfare. Although the structural model used in this study suggests an increase in welfare, a more comprehensive general equilibrium model is required to assess the overall advantages and disadvantages of this policy. Additionally, the results shed light on the decision-making processes of households and banks when it comes to selecting payment technologies. While smaller banks may initially be slower to adopt new technologies, the introduction of Pix highlights the substantial benefits they can reap from early adoption. In
turn, households are willing to alter their investment behavior if small banks can offer convenient payment options. Further research in this field is necessary to provide more comprehensive answers to the questions posed.

References

50

Appendix

A Additional figures

Figure A.1: Electronic Means of Payment in Brazil, Value

Note: Data is from the Central Bank of Brazil. The graph plots the value of transactions for the main retail electronic means of payment in Brazil – Pix (instant payment system launched in November 2020), Direct payments (includes Boleto Bancário (payment slip used by the coalition of large Brazilian banks since 1993), direct deposit, and others), and cards (debit, credit, and pre-paid). All transactions are in billion Brazilian Reals (the exchange rate as of January 2023 is 0.19 USD per 1 BRL).

B Data definitions and sources

Table B.1 shows sources of the data and simple definitions. Specifically, Column 3 provides frequencies, and Column 4 depicts points of observation. Most of the data is monthly and municipality-level. Bank data is branch-level and also monthly. Such
Note: Data is from ESTBAN. The graph plots the checking, saving, and time deposits of Brazilian banks from January 2020 to July 2022. The left axis corresponds to checking and saving deposits, and the right axis – to time deposits. The vertical black line corresponds to November 2020, when Pix was launched. All values are in billion Brazilian Reals (the exchange rate as of January 2023 is 0.19 USD per 1 BRL).
Figure A.3: Net Interest Margin of Brazilian Banks

Note: Data is from FRED – database maintained by St. Louis Fed. The graph plots aggregated net interest margins of Brazilian banks and compares them to government debt interest rate. Solid blue line corresponds to the rate on Brazilian treasuries. Dashed red line is the net interest margin.
Figure A.4: Capital Adequacy Ratio of Brazilian Banks

Note: Data is from the Central Bank of Brazil. The graph plots aggregated capital ratios of Brazilian banks and compares them to the required capital ratios. Solid blue line corresponds to the capital ratios. Dashed red line is the required capital ratio.
Table B.1: Data definitions and sources

<table>
<thead>
<tr>
<th>Name</th>
<th>Source</th>
<th>Frequency</th>
<th>Point of observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pix volume</td>
<td>Banco Central</td>
<td>Monthly</td>
<td>Municipality</td>
</tr>
<tr>
<td>Pix transactions</td>
<td>Banco Central</td>
<td>Monthly</td>
<td>Municipality</td>
</tr>
<tr>
<td>Assets</td>
<td>ESTBAN</td>
<td>Monthly</td>
<td>Branch</td>
</tr>
<tr>
<td>Deposits</td>
<td>ESTBAN</td>
<td>Monthly</td>
<td>Branch</td>
</tr>
<tr>
<td>Loans</td>
<td>ESTBAN</td>
<td>Monthly</td>
<td>Branch</td>
</tr>
<tr>
<td>Reserves</td>
<td>ESTBAN</td>
<td>Monthly</td>
<td>Branch</td>
</tr>
<tr>
<td>Loan rates</td>
<td>Banco Central</td>
<td>Monthly</td>
<td>Bank</td>
</tr>
<tr>
<td>Investments</td>
<td>IPEA</td>
<td>Annual</td>
<td>Municipality</td>
</tr>
<tr>
<td>Savings</td>
<td>IPEA</td>
<td>Annual</td>
<td>Municipality</td>
</tr>
<tr>
<td>GDP per capita</td>
<td>IBGE</td>
<td>Annual</td>
<td>Municipality</td>
</tr>
<tr>
<td>Demographics</td>
<td>IBGE</td>
<td>Only 2010</td>
<td>Municipality</td>
</tr>
<tr>
<td>Inflation</td>
<td>Banco Central</td>
<td>Monthly</td>
<td>Country</td>
</tr>
<tr>
<td>Exchange rates</td>
<td>Banco Central</td>
<td>Monthly</td>
<td>Country</td>
</tr>
<tr>
<td>Unemployment</td>
<td>Banco Central</td>
<td>Monthly</td>
<td>Country</td>
</tr>
</tbody>
</table>

Note: This table provides data definitions and sources. Columns 1 and 2 contain names and sources. Columns 3 and 4 show frequencies and points of observation.

granularity allows me to provide rigorous cross-sectional evidence in the paper.

C Heteroskedasticity-based identification

Heteroskedasticity-based identification was proposed by Rigobon and Sack (2003) and Rigobon and Sack (2004) and was later used by Hébert and Schreger (2017). Consider the model of simultaneous equations:

\[
P_{i}x_{mt} = \delta HHI_{mt} + \gamma_p F_{mt} + u_{mt} \tag{C.1}
\]

\[
HHI_{mt} = \alpha P_{i}x_{mt} + \gamma F_{mt} + \varepsilon_{mt} \tag{C.2}
\]

I consider two months in the sample – October and November. Pix was introduced in November and COVID-19 restrictions were eased by September. Hence, my identifying assumption is as follows. Denote the standard deviation of \(u_{mt}\) by \(\sigma^u_{mt}\), standard deviation of \(\varepsilon_{mt}\) by \(\sigma^e_{mt}\), and standard deviation of unobservables by \(\sigma^F_{mt}\). Further de-
note municipalities that lifted COVID restrictions by \(m' \) and other municipalities by \(m^0 \). I assume that \((\sigma^u_{m'Nov})^2 - (\sigma^u_{m'Oct})^2 > (\sigma^u_{m^0Nov})^2 - (\sigma^u_{m^0Oct})^2\), \((\sigma^\varepsilon_{m'Nov})^2 - (\sigma^\varepsilon_{m'Oct})^2 = (\sigma^\varepsilon_{m^0Nov})^2 - (\sigma^\varepsilon_{m^0Oct})^2\), \((\sigma^F_{m'Nov})^2 - (\sigma^F_{m'Oct})^2 = (\sigma^F_{m^0Nov})^2 - (\sigma^F_{m^0Oct})^2\). In other words, the variance of Pix shocks increases between October and November in affected municipalities by more than in unaffected municipalities but the variances of unobservables and deposit shocks change the same way.

Rigobon and Sack (2004) and Hébert and Schreger (2017) show that the heteroskedasticity-based identification can be implemented using a simple IV specification. The second-stage equation is given by (8). The first-stage equation is given by the following expression:

\[
\text{PixPerCap}_{mt} = \alpha \text{Eased}_m + \theta \text{Pix}_t + \gamma \text{Eased}_m \text{Pix}_t + \eta \text{Eased}_m \text{PixPerCap}_{mt} + u_{mt} \quad \text{(C.3)}
\]

where \(\text{Eased}_m \) is equal to one for municipalities that lifted COVID restrictions, and \(\text{Pix}_t \) is equal to one for November 2020 and zero for October 2020.

D Additional results and robustness tests

D.1 Impact of instant payments on investments

Pix facilitates transactions in Brazil and mitigates payment frictions that existed before. I hence find that Pix leads to an increase in deposits and loans and a reduction in deposit market concentration. Therefore, the introduction of Pix should boost the economy by impacting investments. In this Section, I show that Pix leads to growth in investments and, to a lesser extent, in savings.

D.1.1 Empirical strategy

Since data on investments and savings are annual, I collapse observation to the level of municipalities at the time of Pix introduction. I hypothesize that larger initial use of Pix
leads to growth in investments and savings in 2020 and 2021. To test the hypotheses, I run the following regression for investments:

\[
\log \text{Inv}_{m,T+1} = \eta_I \log \text{Pix}_{m,T} + \rho_I \log \text{Inv}_{m,T} + \mu_I X_{m,T} + v_{m,T} \tag{D.4}
\]

where \(\text{Pix}_{m,T}\) is Pix transaction value for municipality \(m\) in November 2020, \(\text{Inv}_{m,T}\) and \(\text{Inv}_{m,T+1}\) are capital investments in municipality \(m\) in 2020 and 2021, respectively, \(X_{m,T}\) is a vector of demographic and economic controls including average household income, municipality status, literacy ratio, gender and age ratios, deposit market concentration, and average bank assets. I cluster standard errors at the municipality level to account for potential unobservable correlations within areas.

I run a similar regression for savings:

\[
\log \text{Sav}_{m,T+1} = \eta_S \log \text{Pix}_{m,T} + \rho_S \log \text{Sav}_{m,T} + \mu_S X_{m,T} + u_{m,T} \tag{D.5}
\]

where \(\text{Sav}_{m,T}\) and \(\text{Sav}_{m,T+1}\) are personal savings in municipality \(m\) in 2020 and 2021, respectively. I include the same set of control variables as in (D.4).

I also include the Herfindahl-Hirschman index in both regressions to compare municipalities with high and low deposit market concentration. I demean HHI and interact with the Pix value to compare the impact of Pix on investments and savings in municipalities with different deposit market concentrations. I discuss the necessity of the exercise and its implications in detail in Section 4.

D.1.2 Results

Table D.2 shows the results. The introduction of Pix leads to a significant increase in investments and savings in 2020 and 2021. Specifically, a 100% increase in initial Pix transactions leads to an investment growth of 14.8% in 2021 and 13.9% in 2020. A one s.d. increase in Pix transactions also increases savings by 3% in 2021 and reduces savings by 1.3% in 2021. Results on investments support the hypothesis. However, the impact
Table D.2: Impact of Pix on Capital Investments and Savings

\[\log \text{Inv}_{m,T+1} = \eta_I \log \text{Pix}_{m,T} + \rho_I \log \text{Inv}_{m,T} + \mu_I \text{X}_{m,T} + \upsilon_m \]
\[\log \text{Sav}_{m,T+1} = \eta_S \log \text{Pix}_{m,T} + \rho_S \log \text{Sav}_{m,T} + \mu_S \text{X}_{m,T} + \upsilon_m \]

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Investments 2021</th>
<th>Investments 2020</th>
<th>Savings 2021</th>
<th>Savings 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pix</td>
<td>0.148***</td>
<td>0.139***</td>
<td>0.030***</td>
<td>−0.013***</td>
</tr>
<tr>
<td>Lag</td>
<td>0.545***</td>
<td>0.584***</td>
<td>1.003***</td>
<td>0.925***</td>
</tr>
<tr>
<td>HHI</td>
<td>−0.532***</td>
<td>−0.291***</td>
<td>0.003</td>
<td>−0.017</td>
</tr>
<tr>
<td>Pix · HHI</td>
<td>−0.111***</td>
<td>−0.102***</td>
<td>−0.041***</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Demographic controls | Yes | Yes | Yes | Yes |
Economic controls | Yes | Yes | Yes | Yes |
Observations | 3,152 | 3,166 | 3,089 | 3,178 |
R² | 0.727 | 0.756 | 0.984 | 0.994 |

Note: This table provides results of estimation of equations (D.4), and (D.5). Columns 1 and 2 show results for investments in 2021 and 2020, respectively. Columns 3 and 4 show results for savings in 2021 and 2020, respectively. Demographic and economic control variables are included. Herfindahl-Hirschman index is demeaned. Standard errors are clustered at the municipality level and displayed in parentheses. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

Deposit market concentration dampens the impact of Pix on investments and savings. For example, if HHI increases by 0.1 units, investment in 2021 increases by 13.7% instead of 14.8% following a doubling in Pix transactions. Both HHI and its interaction with Pix are statistically significant, implying an essential role of deposit market concentration in transmitting the effect of Pix on the real economy.

on savings is economically small. A savings reduction can indicate more spending due to mitigated payment frictions in the Brazilian economy.
Table D.3: Impact of Pix on Equity Returns

\[R_{it} = \eta \cdot Pix_t \cdot Li + \alpha_i + \theta_t + \nu_{it} \]

<table>
<thead>
<tr>
<th>Dependent variable: Equity returns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Pix</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Large</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pix \cdot Large</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Constant</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Bank FE	No	No	Yes	Yes
Time FE	No	Yes	No	Yes
Observations	314	314	314	314
\(R^2\)	0.053	0.349	0.087	0.386

*Note: This table provides results of estimation of the effect of Pix introduction on bank equity returns. Returns are defined as daily growth rates in equity prices collected from Bloomberg. Pix\(_t\) is a dummy for the time after November 1, 2020. The time range is from October 15 to November 15, 2020. Bank and time fixed effects are included. Standard errors are displayed in parentheses. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

D.2 Impact of Pix on equity prices

Since large banks lose retail deposits relative to small banks and substitute them with uninsured funds, equity prices might be affected. I collect equity price data of the Brazilian bank stocks traded on the B3 stock exchange from Bloomberg. I then restrict the sample to the period between October 15, 2020, till November 15, 2020, and analyze daily returns. Table D.3 shows that the stock returns of large banks fall on average by 20 b.p. daily after the introduction of Pix. However, The effects are insignificant, reflecting that large banks replaced insured deposits with uninsured funds without raising fear of potential default since large banks are systemically important.
Table D.4: Impact of Pix on Deposits and Loans: Cross-Sectional IV with Easing of COVID Restrictions

\[\log D_m = \delta \log \hat{P}_m + \theta X_m + \alpha_m \]

<table>
<thead>
<tr>
<th></th>
<th>Checking deposits</th>
<th>Saving deposits</th>
<th>Time deposits</th>
<th>Total loans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable:</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Pix</td>
<td>3.340***</td>
<td>2.813***</td>
<td>12.00***</td>
<td>2.889***</td>
</tr>
<tr>
<td></td>
<td>(0.359)</td>
<td>(0.337)</td>
<td>(1.905)</td>
<td>(0.474)</td>
</tr>
</tbody>
</table>

Controls: Yes Yes Yes Yes
Observations: 2,243 2,243 2,243 2,243
R²: 0.790 0.806 0.491 0.693

Note: This table provides results of the second stage in the IV estimation of equation (8) in the cross-section. The easing of COVID-19 restrictions in Brazil is used as an instrument for Pix usage. The specification uses a heteroskedasticity-based identification strategy conditional on the information in October 2020. Column 1 presents results for checking deposits. Column 2 presents results for saving deposits. Column 3 shows results for saving deposits. Column 4 corresponds to total loans. Standard errors are clustered at the municipality level and displayed in parentheses. Time fixed effects are included in the panel regression. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

D.3 Cross-sectional IV specification

I included October 2020 in the IV specification in Section 5 to account for the information available prior to the Pix launch. Then, my identification strategy and assumptions were different from the standard approach of Rigobon and Sack (2004) and Hébert and Schreger (2017). In this section, I identify the impact of Pix on deposits and market concentration in the cross-sectional setting. The identifying assumption is that the easing of COVID restrictions in Brazil impacts the volatility of Pix shocks but not of common shocks or shocks to deposits and market concentration.

Table D.4 shows the results for deposits. All types of deposits increase due to Pix introduction, consistent with the paper’s main results. Note that numbers are large indicating a huge inflow of deposits associated with the new payment method when I do not account for deposits in October 2020. This fact stresses the necessity of running panel regressions instead.
Figure D.5 plots the change in HHI as a result of Pix introduction. As before, there is a significant reduction in local market concentration in municipalities with large Pix transactions.

D.4 Placebo IV tests

In this section, I repeat the analysis that produces Figure 4, but instead of using 2020 data, I exploit the 2018 and 2019 series. Figure ?? shows that HHI does not decline if 2018 and 2019 data is used. Hence, the results in the paper are likely not driven by seasonality in market power or municipality-specific reasons.

D.5 Bootstrapping standard errors

Hébert and Schreger (2017) argue that standard errors need to be bootstrapped when conducting a heteroskedasticity-based strategy. Table D.5 shows that the results are robust to bootstrapping standard errors.

D.6 Impact of Boleto Bancário

The impact of instant payments on bank competition generally depends on the specific design. Larger banks might adopt certain types of technologies faster than smaller banks. For example, Zelle and Swish are mainly used by large banks. I argue in the paper that Pix’s success is determined by its availability to all financial intermediaries in Brazil.

To justify the claim, I study the impact of Boleto Bancário on deposit market concentration in Brazil. Boleto was created by the association of Brazilian banks, which only includes less than 20% of all banks in the country. It then should provide more market power to larger banks since they offer a better payment convenience. I run the following regression:

\[
\log D_{it} = \delta \cdot \log Boleto_t \cdot L_i + \gamma X_{imt} + \theta_t + \alpha_i + \varepsilon_{imt} \tag{D.6}
\]
Figure D.5: Impact of Pix on Deposit Market Concentration: Cross-Sectional IV with Easing of COVID Restrictions

\[HHI_{m,T+s} = \theta \text{PixPerCap}_{mT} + \delta HHI_{m,T} + \gamma X_{mT} + \eta_m \]

Note: This figure plots the results of the second stage in the IV estimation of equation (8) in the cross-section. The vertical axis corresponds to \(\theta \) – sensitivity of future deposit market concentration to per capita Pix transactions predicted by the COVID-19 restrictions easing using heteroskedasticity-based estimation. The horizontal axis corresponds to months since Pix launch denoted by \(T \). Blue dots are coefficients, whereas grey lines are 95% confidence intervals constructed by clusterization on the municipality level.
Figure D.6: Impact of Pix on Deposit Market Concentration: Placebo Tests

\[HHI_{m,T+s} = \theta \hat{PixPerCap}_{mT} + \delta HHI_{m,T} + \gamma X_{mT} + \eta_m \]

(a) 2018 Placebo

(b) 2019 Placebo

Table D.5: Impact of Pix on Deposits and Loans: Bootstrapped IV with Easing of COVID Restrictions

\[\log D_m = \delta \log \hat{Pix}_{x_m} + \theta X_m + o_m \]

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Checking deposits</th>
<th>Saving deposits</th>
<th>Time deposits</th>
<th>Total loans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pix</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>3.340***</td>
<td>2.813***</td>
<td>12.00***</td>
<td>2.889***</td>
</tr>
<tr>
<td></td>
<td>(0.352)</td>
<td>(0.332)</td>
<td>(1.992)</td>
<td>(0.477)</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>2,243</td>
<td>2,243</td>
<td>2,243</td>
<td>2,243</td>
</tr>
<tr>
<td>R²</td>
<td>0.790</td>
<td>0.806</td>
<td>0.491</td>
<td>0.693</td>
</tr>
</tbody>
</table>

Note: This table provides results of the second stage in the IV estimation of equation (8) in the cross-section. The easing of COVID-19 restrictions in Brazil is used as an instrument for Pix usage. The specification uses a heteroskedasticity-based identification strategy conditional on the information in October 2020. Column 1 presents results for checking deposits. Column 2 presents results for saving deposits. Column 3 shows results for saving deposits. Column 4 corresponds to total loans. Standard errors are bootstrapped and displayed in parentheses. Time fixed effects are included in the panel regression. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

Note: This figure plots the results of the second stage in the IV estimation of equation (8) using data from 2018 and 2019 as a placebo test. The vertical axis corresponds to \(\theta \) – sensitivity of future deposit market concentration to per capita Pix transactions predicted by the COVID-19 restrictions easing using heteroskedasticity-based estimation. The horizontal axis corresponds to months since Pix launch denoted by \(T \), but instead of 2020, I use 2018 and 2019, respectively. Blue dots are coefficients, whereas grey lines are 95% confidence intervals constructed by clusterization on the municipality level.
Table D.6: Impact of Boleto Bancário on Bank Deposits

\[\log D_{it} = \delta \cdot \log Boleto_t \cdot S_i + \gamma X_{int} + \theta_t + \alpha_i + \epsilon_{int} \]

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Checking deposits (1)</th>
<th>Saving deposits (2)</th>
<th>Time deposits (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boleto • Small</td>
<td>-0.029*</td>
<td>-0.761***</td>
<td>0.271***</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.236)</td>
<td>(0.095)</td>
</tr>
<tr>
<td>Bank FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>509,088</td>
<td>509,088</td>
<td>509,088</td>
</tr>
<tr>
<td>R²</td>
<td>0.894</td>
<td>0.860</td>
<td>0.812</td>
</tr>
</tbody>
</table>

Note: This table provides results of estimation of equation (D.6). The column corresponds to checking deposits. Column 2 shows results for saving deposits. Column 3 corresponds to time deposits. Standard errors are clustered at the municipality level and displayed in parentheses. Bank and time fixed effects are included. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

where Boleto\(_t\) is equal to one after January 1993 – the date of the Boleto launch. I restrict the sample to one year before and after the introduction of Boleto. I use a dummy instead of the cross-sectional measure due to data availability constraints.

Table D.6 shows the results. Estimates in Columns 1 and 2 demonstrate that the introduction of Boleto had a significant positive impact on checking and saving deposits of larger banks compared to smaller banks.\(^{36}\) In other words, deposit markets became more concentrated after the launch of Boleto. Column 3 shows the opposite result for time deposits, but it is economically smaller than the effect on saving deposits. The outflow of time deposits is likely associated with the deposit tax introduced by the Brazilian government shortly before the introduction of Boleto. The evidence suggests that the broad availability of Pix is key to promoting more competitive deposit markets.

\(^{36}\)I define large and small banks based on the asset size in 1992.
D.7 Impact of Swish

Swish in was launched by six large banks in Sweden in 2012. The entry costs for other banks are substantial (the participants must approve all applications). Initially, Swish was designed to be a peer-to-peer payment application but later became a payment method. I hand-collect data on ten banks in Sweden from their quarterly financial reports – six original participants of Swish and four large banks that were not part of Swish.

Figure D.7 plots the retail deposits. First, the deposit market concentration increases after the introduction of Pix, because participating banks now offer greater payment convenience than before. Second, the effect of Swish is not economically large because Swish was initially a peer-to-peer payment application. The result suggests that instant payment systems impact customers’ deposit choices most when they mitigate *retail payment* frictions, as Pix did. Finally, the figure only plots deposits of the ten largest banks. Since Sweden has over 90 commercial banks, the results can be stronger.

D.8 COVID-19 and deposit markets in Brazil

The Pix launch took place during COVID-19 pandemic. Although by November, most restrictions were lifted, and I use easing of COVID-19 restrictions to identify the impact of Pix on deposits and market power in Section 5, there are still concerns that bank deposits could have increased in municipalities with strict COVID restrictions.

In this Section, I use data on COVID restrictions by municipalities provided by [de Souza Santos et al. (2021)](souza2021) to show how two types of COVID restrictions impacted bank deposits. Specifically, I run the following regression:

\[
\log D_{mT} = \delta R_{mT} + \gamma X_{mT} + \varepsilon_{mT}
\]

where \(T \) is November 2020 and \(R_{mT} \) is equal to one if COVID restriction were imple-

37Sveriges Riksbank is designing a retail instant payment system, Rix, that will be available to all banks in Sweden. One motivation can be the monopoly power of Swish participants.
Figure D.7: Impact of Swish on Deposit Market Concentration

Note: This figure plots the deposits of Swedish commercial banks. The blue line (left axis) plots retail deposits of banks that were not Swish participants as of 2012. The red line (right axis) plots retail deposits of banks that were original Swish participants. All numbers are in millions SEK. The vertical black line corresponds to January 2012, when Swish was introduced.
Table D.7: Impact of COVID-19 Restrictions on Bank Deposits

\[
\log D_{mT} = \delta \text{Restr}_{m} + \gamma X_{mT} + \varepsilon_{mT}
\]

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Checking deposits</th>
<th>Saving deposits</th>
<th>Time deposits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Masks</td>
<td>-0.048</td>
<td>-0.152**</td>
<td>-0.371</td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td>(0.076)</td>
<td>(0.287)</td>
</tr>
<tr>
<td>Isolation</td>
<td>-0.098***</td>
<td>-0.014</td>
<td>-0.142</td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.032)</td>
<td>(0.129)</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>2,326</td>
<td>2,331</td>
<td>2,326</td>
</tr>
<tr>
<td>R²</td>
<td>0.773</td>
<td>0.774</td>
<td>0.792</td>
</tr>
</tbody>
</table>

Note: This table provides results of estimation of equation (D.7). The first two columns correspond to checking deposits. Columns 3 and 4 show results for saving deposits. Columns 4 and 5 correspond to time deposits. Standard errors are clustered at the municipality level and displayed in parentheses. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

I considered two types of COVID restrictions – mask mandates and isolation requirements.

Table D.7 shows the results. It is clear that deposits did not rise in municipalities with strict COVID-19 restrictions. Moreover, there was a reduction in checking deposits in municipalities with self-isolation in place and an outflow of saving deposits in municipalities with mask mandates. Therefore, the main results of the paper cannot be driven by an increase in deposits during the COVID-19 pandemic.

D.9 IV first stage

Table D.8 shows the first-stage estimation in the IV. There was more Pix usage in municipalities that eased COVID-19 restrictions, which verifies the relevance condition.
Table D.8: Impact of the Easing of COVID-19 Restrictions on Pix

\[
\log Pix_{mt} = \alpha Eased_m + \theta Pix_t + \gamma Eased_m Pix_t + \theta X_{mt} + \theta_t + \nu_m + \varepsilon_{mt}
\]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eased</td>
<td>-0.128***</td>
<td>-0.128***</td>
<td>(0.027)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>Post Pix</td>
<td>13.750***</td>
<td>13.750***</td>
<td>(0.037)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>Eased \cdot Post Pix</td>
<td>0.357***</td>
<td>0.357***</td>
<td>0.357***</td>
<td>0.357***</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.045)</td>
<td>(0.050)</td>
<td>(0.050)</td>
</tr>
</tbody>
</table>

	No	No	Yes	Yes
Municipality FE				
Time FE	No	Yes	No	Yes
Controls	Yes	Yes	Yes	Yes
Observations	7,124	7,124	7,122	7,122
R²	0.984	0.984	0.986	0.986

Note: This table provides results of the first stage in the IV estimation. \(Eased_i = 1 \) for municipalities that eased COVID-19 restrictions by September 2020. \(Pix_t = 1 \) for November 2020. Columns 2-3 include time and/or municipality fixed effects. Robust standard errors are displayed in parentheses. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.
Table D.9: Impact of Pix on Deposits and Loans: Standard IV

\[\log D_{mt} = \delta \cdot \log \hat{P}ix_{mt} \cdot S_i + \theta X_{mt} + o_{mt} \]

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Checking deposits (1)</th>
<th>Saving deposits (2)</th>
<th>Time deposits (3)</th>
<th>Total loans (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pix</td>
<td>0.013**</td>
<td>-0.011**</td>
<td>-0.051**</td>
<td>0.015**</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.024)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Pix \cdot Small</td>
<td>0.029**</td>
<td>0.035***</td>
<td>0.113**</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.011)</td>
<td>(0.047)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>7,123</td>
<td>7,123</td>
<td>7,123</td>
<td>7,123</td>
</tr>
<tr>
<td>R²</td>
<td>0.653</td>
<td>0.598</td>
<td>0.384</td>
<td>0.526</td>
</tr>
</tbody>
</table>

Note: This table provides results of the second stage in the IV estimation of equation (8). The easing of COVID-19 restrictions in Brazil is used as an instrument for Pix usage. The specification uses a standard IV approach. Column 1 presents results for checking deposits. Column 2 presents results for saving deposits. Column 3 shows results for saving deposits. Column 4 corresponds to total loans. Standard errors are clustered at the municipality level and displayed in parentheses. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

D.10 Standard IV analysis

In previous sections, I showed that Pix impacts deposits and loans using heteroskedasticity-based identification. In this Section, I show similar results using the standard IV approach that does not rely on heteroskedasticity. The assumption is that the easing of COVID restriction can impact changes in deposits and loans from October and November only through their impact on Pix. Note that this assumption is more restrictive than the one in Section 5 since it does not only assume that the variance of unobservables and deposit shocks do not change, but it assumes that shocks and unobservables themselves do not change.

Table D.9 shows the results. Even with a simple IV approach where biases towards zero are possible, Pix increases checking, saving, and time deposits. Column 4 also shows larger lending in municipalities with more Pix transactions.
D.11 Banking response depending on the deposit market concentration in the area

In this Section, I include deposit market HHI in the main set of regressions. Table D.10 show the results. The results are generally dampened in more concentrated areas. For example, large banks are able to attract more deposits in areas with high deposit market concentration, potentially due to new customers and better advertisement.

D.12 Bootstrapping standard errors

In Table 4 standard errors are clustered at the municipality level to account for potential correlation between the residuals within the same municipality (Petersen (2009); Abadie et al. (2022)). The correlation between the residuals across municipalities is also possible and it would require clustering standard errors at the time level. Since my sample in the regressions includes only three months pre-Pix and three after, clusterization can bias standard errors (Bertrand et al. (2004)). In this Section, I follow Bertrand et al. (2004) and bootstrap standard errors. I also include municipality fixed effects to account for regional unobservables. Table D.11 shows that the main results are robust.

D.13 Impact on municipality-level income

One identification concern is that COVID restrictions can impact income and, thus, violate the exclusion restriction. Table D.12 shows that Pix usage does not predict an increase in municipality-level GDP per capita in 2020.

D.14 Instrumenting Pix with high-speed internet access

I collect municipality-level data on access to high-speed internet from Anatel. In the first stage, I regress the value of per capita Pix transactions on the index of high-speed internet access. Table D.13 shows that Pix is used more in areas with better access to high-speed internet. The results indicate that the relevance assumption is likely satisfied.
Table D.10: Impact of Pix on Bank Deposits: Interactions with HHI

\[
\log D_{it} = \delta \cdot \log Pix_{mt} \cdot L_i \cdot HHI_m + \beta Y_{int} + \gamma X_{int} + \theta_t + \alpha_i + \varepsilon_{int}
\]

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Checking deposits</th>
<th>Saving deposits</th>
<th>Time deposits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Pix</td>
<td>0.043</td>
<td>0.121**</td>
<td>-0.078***</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.066)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>HHI</td>
<td>0.044**</td>
<td>-0.020</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.019)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>Pix \cdot Large</td>
<td>-0.016**</td>
<td>-0.024***</td>
<td>-0.025***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.008)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>HHI \cdot Large</td>
<td>0.141***</td>
<td>0.100***</td>
<td>-0.040</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.020)</td>
<td>(0.030)</td>
</tr>
<tr>
<td>Pix \cdot HHI</td>
<td>0.001</td>
<td>-0.008</td>
<td>0.069***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.013)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>Pix \cdot Large \cdot HHI</td>
<td>0.037***</td>
<td>0.019***</td>
<td>0.041***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>Bank FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>36,496</td>
<td>36,496</td>
<td>36,496</td>
</tr>
<tr>
<td>R^2</td>
<td>0.852</td>
<td>0.853</td>
<td>0.945</td>
</tr>
</tbody>
</table>

Note: This table provides results of estimation of equation (2) including interactions with HHI. The first two columns correspond to checking deposits. Columns 3 and 4 show results for saving deposits. Columns 4 and 5 correspond to time deposits. Standard errors are clustered at the municipality level and displayed in parentheses. Bank and time fixed effects are included. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.
The exclusion restriction implies that the only way access to high-speed internet can impact change in deposit market concentration between October and November is through its impact on access to Pix. Figure D.8 shows the results. First, there is almost no pre-trend. Second, there is a significant reduction in HHI following the introduction of Pix. Economic impact is comparable to effects found when COVID-19 restrictions are used as instruments.

E Structural estimation appendix

E.1 Regional estimation results

Table E.14 provided the results of the estimation of the deposit demand using BLP separately for each region of Brazil. As can be seen, there is some variation in estimates.

Note: This table provides results of estimation of equation (2) with bootstrapped standard errors and municipality fixed effects. The first column corresponds to checking deposits. Column 2 shows results for saving deposits. Column 3 corresponds to time deposits. Standard errors are bootstrapped and displayed in parentheses. Municipality fixed effects are included. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

Table D.11: Impact of Pix on Bank Deposits: Bootstrapped Standard Errors

\[\log D_{it} = \delta \cdot \log Pix_{mt} \cdot S_i + \gamma \cdot X_{int} + \theta_i + \alpha_i + \eta_{mt} + \varepsilon_{int} \]

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Checking deposits</th>
<th>Saving deposits</th>
<th>Time deposits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Pix · Small</td>
<td>0.030***</td>
<td>0.032**</td>
<td>0.043***</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.016)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Bank FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Muni × Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>32,097</td>
<td>32,097</td>
<td>32,097</td>
</tr>
<tr>
<td>R²</td>
<td>0.882</td>
<td>0.961</td>
<td>0.923</td>
</tr>
</tbody>
</table>

38 Small pre-trend likely implies that small banks had an advantage in areas with bad access to the internet during COVID-19 restrictions since they are mainly not digital.
Figure D.8: Impact of Pix on Deposit Market Concentration: IV with Access to High-Speed Internet

\[HHI_{m,t+s} = \theta \hat{PixPerCap}_{mt} + \delta HHI_{m,t} + \gamma X_{mt} + \eta_{mt} \]

Note: This figure plots the results of the second stage in the IV estimation of equation (8) where access to high-speed internet is used as an instrument. The vertical axis corresponds to \(\theta \) – sensitivity of future deposit market concentration to per capita Pix transactions predicted by the access to high-speed internet. The horizontal axis corresponds to months since Pix launch. Blue dots are coefficients, whereas grey lines are 95% confidence intervals constructed by clusterization on the municipality level.
Table D.12: Impact of Pix on Bank Deposits: Bootstrapped Standard Errors

\[
\log GDP_{pc_{mt}} = \delta \log Pix_{mt} + \theta X_{mt} + o_{mt}
\]

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HC</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Pix</td>
<td>-0.004*</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>7,124</td>
</tr>
<tr>
<td>R(^2)</td>
<td>0.426</td>
</tr>
</tbody>
</table>

Note: This table provides results of the IV estimation of the impact of Pix on GDP per capita across municipalities. The first column estimates the causal effect using heteroskedasticity-based estimation. Column 2 shows results using standard IV. Standard errors are clustered at the municipality level and displayed in parentheses. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

Across regions but on average, national results hold. Higher deposit rates increase demand for time deposits, and more exposure to Pix leads to an increase in demand for all banks’ deposits, but the effect is generally lower for large banks.

E.2 Regional level welfare and counterfactuals

In this Section, I plot counterfactuals and welfare gains separately for each region of Brazil. Figure E.9 shows welfare gains. Generally for most regions, Pix introduction is welfare improving, especially since all banks offer it. Pix can reduce welfare (potentially via increased deposit rates of large banks) in the North and Central-West. The most populous areas of Brazil are the Southeast and South, where the welfare gains are largest.

Figure E.10 plots percentage HHI gains separately for each region. As before, deposit markets generally become more competitive after the introduction of Pix, that all banks offer, and more concentrated if Pix is offered only by large banks.
Table D.13: Impact of the Access to High-Speed Internet on Pix Per Capita

\[
\log \text{PixPerCap}_{mt} = \alpha \text{HighSpeed}_m + \theta \text{Pix}_t + \gamma \text{HighSpeed}_m \text{Pix}_t + \theta X_{mt} + \theta_t + v_m + \varepsilon_{mt}
\]

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable: Per Capita Pix</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>High Speed</td>
<td>-0.017***</td>
<td>-0.017***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>Post Pix</td>
<td>12.87***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Speed \cdot Post Pix</td>
<td>0.057***</td>
<td>0.057***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td></td>
</tr>
<tr>
<td>Time FE</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>5,719</td>
<td>5,719</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>0.985</td>
<td>0.985</td>
<td></td>
</tr>
</tbody>
</table>

Note: This table provides results of the first stage in the IV estimation where access to high-speed internet is used as an instrument for Pix access. \(\text{Pix}_t = 1 \) for November 2020. Column 2 includes time fixed effects. Robust standard errors are displayed in parentheses. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.
Table E.14: Regional Structural Estimation Results

<table>
<thead>
<tr>
<th>Panel A: North</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity to deposit rates</td>
<td>α^d</td>
<td>0.732***</td>
<td>(0.253)</td>
</tr>
<tr>
<td>Sensitivity to Pix</td>
<td>β^d</td>
<td>-0.721***</td>
<td>(0.151)</td>
</tr>
<tr>
<td>Additional sensitivity to Pix for large banks</td>
<td>δ^d</td>
<td>-0.057***</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td>959</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td>0.984</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Northeast</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity to deposit rates</td>
<td>α^d</td>
<td>4.298**</td>
<td>(2.134)</td>
</tr>
<tr>
<td>Sensitivity to Pix</td>
<td>β^d</td>
<td>0.043</td>
<td>(0.460)</td>
</tr>
<tr>
<td>Additional sensitivity to Pix for large banks</td>
<td>δ^d</td>
<td>0.035</td>
<td>(0.031)</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td>934</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td>0.734</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C: Central-West</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity to deposit rates</td>
<td>α^d</td>
<td>-0.039***</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Sensitivity to Pix</td>
<td>β^d</td>
<td>-0.095***</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Additional sensitivity to Pix for large banks</td>
<td>δ^d</td>
<td>-0.057***</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td>997</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td>0.999</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel D: Southeast</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity to deposit rates</td>
<td>α^d</td>
<td>-0.010</td>
<td>(2.507)</td>
</tr>
<tr>
<td>Sensitivity to Pix</td>
<td>β^d</td>
<td>0.380**</td>
<td>(0.181)</td>
</tr>
<tr>
<td>Additional sensitivity to Pix for large banks</td>
<td>δ^d</td>
<td>-0.016</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td>1,762</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td>0.915</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel E: South</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity to deposit rates</td>
<td>α^d</td>
<td>0.684***</td>
<td>(0.244)</td>
</tr>
<tr>
<td>Sensitivity to Pix</td>
<td>β^d</td>
<td>0.379***</td>
<td>(0.111)</td>
</tr>
<tr>
<td>Additional sensitivity to Pix for large banks</td>
<td>δ^d</td>
<td>-0.024***</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td>805</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td>0.997</td>
<td></td>
</tr>
</tbody>
</table>

Note: This table provides results of structural estimation of equation (13) separately for each region of Brazil. Regions are North, Northeast, Central-West, Southeast, and South. The method used is GMM following the random coefficient logit procedure described in Berry, Levinsohn, and Pakes (1995). The estimated time period is from January 2015 to December 2021. Bank and time fixed effects are included. Deposit rates are instrumented with supply shifters, and Pix adoption is instrumented with the easing of COVID-19 restrictions in Brazil, as well as demographic data. Standard errors are clustered at the bank level and displayed in Column 4 of the table. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.
Figure E.9: Welfare Gains from the Launch of Pix: Regional Estimation

\(\max_{j \in A^d} u_{i,j} = \alpha^d r_j + \theta^d r_j p_j + \beta^d p_j + \delta^d p_j \ell_j + \gamma^d x_j + \xi_j + \epsilon_{i,j} \) \hspace{1cm} (E.8)

Table E.15 shows the estimation results. Deposits become more sensitive after the introduction of Pix, but estimates are not statistically significant.
Figure E.10: Counterfactual Deposit Market Concentrations: Regional Estimation

(a) No Pix: North (b) No Pix: Northeast (c) No Pix: Central-West
(d) No Pix: Southeast (e) No Pix: South (f) Pix to Large Banks: North
(g) Pix to Large Banks: North-east (h) Pix to Large Banks: Central-West (i) Pix to Large Banks: South-east
(j) Pix to Large Banks: South

Note: These figures plot the percentage HHI gains for counterfactuals from the BLP estimation using two counterfactual scenarios separately for each region of Brazil. Regions are North, Northeast, Central-West, Southeast, and South. The upper block of figures compares the benchmark model where all banks offer Pix with the scenario in which Pix were never introduced. The lower block of figures compares the counterfactual, where Pix is offered only by large banks, with the scenario in which Pix were never introduced.
Table E.15: Structural Estimation Results: State-Dependent Sensitivity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Estimate</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity to deposit rates</td>
<td>α^d</td>
<td>0.246</td>
<td>(0.166)</td>
</tr>
<tr>
<td>Additional sensitivity to deposit rates after Pix</td>
<td>θ^d</td>
<td>0.004</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Sensitivity to Pix</td>
<td>β^d</td>
<td>0.193***</td>
<td>(0.063)</td>
</tr>
<tr>
<td>Additional sensitivity to Pix for large banks</td>
<td>δ^d</td>
<td>-0.029^{***}</td>
<td>(0.006)</td>
</tr>
</tbody>
</table>

Observations 2,097

R2 0.995

Note: This table provides results of structural estimation of equation (13). The method used is GMM following the random coefficient logit procedure described in Berry, Levinsohn, and Pakes (1995). The estimated time period is from January 2015 to December 2021. Bank and time fixed effects are included. Deposit rates are instrumented with supply shifters and Pix adoption is instrumented with the easing of COVID-19 restrictions in Brazil, as well as demographic data. Standard errors are clustered at the bank level and displayed in Column 4 of the table. *, **, and *** correspond to 10-, 5-, and 1% significance level, respectively.

F Stylized model

I now present a finite-horizon model of payments and banks that rationalizes the results of the empirical analysis. Households in the model use deposits in small and large banks and physical cash to consume. They face two types of liquidity-in-advance constraints. Banks choose how many deposits to sell and how many loans to originate. I first solve the model for a cashless economy and then augment the model.

F.1 Cashless economy

In a cashless economy, households can only pay using their bank deposits. They can pay for any product using deposits from large banks and only for a given share of products using deposits from small banks. In other words, large banks provide a payment convenience to households. To attract depositors, small banks pay higher interest rates.
F.1.1 Households

A continuum $[0,1]$ of households denoted by i choose their consumption, C_t, deposits in large banks, DL_t, and deposits in small banks, DS_t, to maximize the log utility:

$$U_0^i = \sum_{t=0}^T \log C_t^i$$ \hspace{1cm} (F.9)

subject to two constraints. The first is a budget constraint:

$$C_t^i + DL_{t+1}^i + DS_{t+1}^i \leq Y_t^i + DL_t^i(1 + r_{t}^{df}) + DS_t^i(1 + r_{t}^{ds})$$ \hspace{1cm} (F.10)

where Y_t^i is an income that consists of bank and firm dividends (enters the households’ problem as a state variable), r_{t}^{df} and r_{t}^{ds} are deposit rates paid by large and small banks, respectively.

The second constraint is a liquidity-in-advance constraint – which is a modification of a cash-in-advance constraint (Lucas (1982); Svensson (1985); Lucas and Stokey (1987)):

$$\eta C_t^i \leq DL_t^i + \varepsilon_t DS_t^i$$ \hspace{1cm} (F.11)

The constraint (F.11) means that for share η of consumption, households can pay either with deposits of large banks or with deposits of small banks but incurring costs reflected by the i.i.d. shock ε_t with mean $\bar{\varepsilon}$ and support $[0, \varepsilon_u)$.

I assume that households make decisions in two stages:

1. **Morning**: ε_t is realized. Households decide how much to consume.

2. **Evening**: Households choose DL_{t+1}^i and DS_{t+1}^i.

This way, households choose deposits without knowing exactly how binding the constraint (F.11) is going to be. When they enter the next period, they discover ε_t and have to sacrifice consumption in order to satisfy the constraint. To avoid unexpected consumption reductions, households in equilibrium keep precautionary savings. Such a strategy to
split the problem into consumption and trading stage is used in Diamond and Landvoigt (2022), Diamond, Landvoigt, and Sanchez (2022), and Elenev and Landvoigt (2022).

F.1.2 Instant payment technology available to all banks

Large banks provide payment convenience to households – their deposits can be used to buy any good in the economy. Small deposits can be used to buy only parts of the goods – for the rest, households have to forgo $1 - \varepsilon_i^t$ share of the deposits to pay. For example, such goods can include online stores or shops that only accept Venmo and cash or stores that charge you for credit card payment but not Venmo or Zelle payment.

Small banks start to provide more payment convenience when an instant payment system is launched and available to all banks. In terms of the model, the distribution of ε_i^t changes. Ideally, all shocks are equal to one, but I take a more conservative approach and assume that the support changes from $[0, \varepsilon^u]$ to $(\varepsilon^l, 1]$ where $\varepsilon^l \geq \varepsilon^u$. In other words, after the IPS launch, all households’ idiosyncratic shocks are more significant – they can use a larger share of their small bank deposits to pay for consumption goods.

Since the convenience value of small deposits increases, we should expect a change in the composition of households’ asset portfolios. Proposition 1 formally states the result.39

Proposition 1 Consider households’ problem in the cashless economy defined in Section F.1.1. In partial equilibrium, i.e., with fixed interest rates and exogenous endowment, Y_t, increase in support of ε_i^t from $[0, \varepsilon^u]$ to $(\varepsilon^l, 1]$ in the evening of the preceding period leads to an increase in DS_t relative to DL_t;

Proposition 1 states that the launch of an instant payment system that is available to small banks increases deposits of small banks relative to deposits of large banks, all else equal. In other words, the relative demand for small bank deposits rises, promoting more deposit competition. The proposition generates the first testable implication of the

39Proof is in Appendix G.1
model – instant payment systems that are available to all banks should reduce deposit market concentration through their effect on payment convenience.

F.1.3 Instant payment technology available only to large banks

Many instant payment systems and new technologies are quickly adopted by large banks, but they are still expensive or unavailable for small banks. For example, Zelle is used by less than 30% of the US FDIC-insured commercial banks. Venmo is offered only by the 30 largest banks. The next proposition states that instant payment technologies available only to large banks have no impact on deposit market competition.

Proposition 2 Consider households’ problem in the cashless economy defined in Section F.1.1. In partial equilibrium, i.e., with fixed interest rates and exogenous endowment, Y_t, the introduction of the payment technology that increases large banks’ payment convenience does not impact deposits.

The proof of Proposition 2 is trivial since large bank deposits can be used to pay for all consumption goods in the economy. Empirical observations tell us that not only 'large bank only’ IPS are not welfare-improving in cashless economies, but they help to make the economy less dependent on cash. I will consider the economy with physical cash below.

F.1.4 Banks

There are two types of banks in the economy – large and small. Markets are perfectly competitive inside the group, i.e., large banks are engaged in perfect competition with each other, and small banks are engaged in perfect competition with each other. The only difference between large and small banks is that large banks offer greater payment convenience to their depositors, are outlined in Section F.1.1. I further denote the type of bank by $b \in \{\ell, s\}$ for notation simplicity. All banks choose deposits and loans to
maximize the value function:

$$V(D^b_t, L^b_t) = \max_{D^b_{t+1}, L^b_{t+1}} \phi N^b_t + \beta \mathbb{E}_t V(D^b_{t+1}, L^b_{t+1})$$ \hspace{1cm} (F.12)$$

where $N_t = L_t - D_t$ is a net worth and ϕ is a share of net worth that is paid to the shareholders (households).

Banks maximize their value function subject to two constraints. The first is a budget constraint that equates retained earnings to the net discounted value of their portfolio:

$$(1 - \phi)N^b_t \geq \frac{1}{1 + r^L_{t+1}} L^b_{t+1} - \frac{1}{1 + r^D_{t+1}} D^b_{t+1}$$ \hspace{1cm} (F.13)$$

where r^L_t is an interest rate on large bank loans. The second constraint is a Basel-type leverage rule:

$$\frac{1}{1 + r^D_{t+1}} D^b_{t+1} \leq \xi \frac{1}{1 + r^L_{t+1}} L^b_{t+1}$$ \hspace{1cm} (F.14)$$

Basel regulations constrain the leverage banks can hold relative to their risk-weighted assets. I follow Elenev, Landvoigt, and Van Nieuwerburgh (2021) and use reverse interest rates as risk weights.

To finalize the model, I assume that there is an exogenous loan demand function, $L^b_t = f(r^L_t)$. I assume that the elasticity of loans to the loan rate is small, so changes in loans due to changes in interest rates do not revert general equilibrium responses.

Since large banks face more deposit demand relative to large banks, we should expect a relative change in interest rates and lending. Proposition 3 formalizes the effects.40

Proposition 3 Consider banks’ problem outlined in Section F.1.4. Assume an increase (or no change) in $\frac{DS^b_t}{DL^b_t}$ for all households and increase for at least one household. Then, the following holds:

1. reduction in $r^d_t - r^d_{t+1}$;
2. increase in L^b_t;

40Proof is in Appendix G.2.
3. reduction in $r_t^{ls} - r_t^{dt}$.

Proposition 3 generates several testable implications. First, small banks should decrease their deposit rates relative to large banks. Generally, small banks have to compensate households for the lack of payment convenience by paying more attractive rates. Since the introduction of an instant payment system that is available to small banks increases their payment convenience relative to large banks, they can start paying lower rates compared to large banks. The proposition’s second and third results show that small banks originate more loans at lower rates than large banks. I will directly test these implications in the data.

F.2 Standard economy

In this Section, I include physical currency (cash) in the model. The difference between large bank deposits and cash is that cash does not pay any interest, and cash can be used to pay for any goods in the economy. On the other hand, large bank deposits can be used to pay only for a given share of consumption goods. Hence, there are two liquidity-in-advance constraints in the model.

F.2.1 Households

A continuum $[0, 1]$ of households denoted by i choose their consumption, C_t, cash, M_t, deposits in large banks, DL_t, and deposits in small banks, DS_t, to maximize the log utility:

$$U_0^i = \sum_{t=0}^{T} \log C_t^i$$

subject to three constraints. The first is a budget constraint:

$$C_t^i + DL_{t+1}^i + DS_{t+1}^i + M_{t+1}^i \leq Y_t^i + DL_t^i(1 + r_t^{dt}) + DS_t^i(1 + r_t^{ds}) + M_t^i$$

where Y_t^i is an income that consists of bank and firm dividends (enters the households’ problem as a state variable), r_t^{dt} and r_t^{ds} are deposit rates paid by large and small banks,
respectively.

The second constraint is a cash-in-advance constraint.

\[\eta^l C_i^t \leq M_t + u_i^t DL_i^t \]

(F.17)

The constraint (F.17) means that for share \(\eta^l \) of consumption, households can pay either with cash or with deposits of large banks but incurring costs reflected by the i.i.d. shock \(u_i^t \) with mean \(\bar{u} \) and support \([0, u^u] \).

The third constraint is a liquidity-in-advance constraint.

\[\eta^s l C_i^t \leq M_t + DL_i^t + \varepsilon_i^t DS_i^t \]

(F.18)

The constraint (F.18) means that for share \(\eta^s \) of consumption, households can pay either with cash, with deposits of large banks, or with deposits of small banks but incurring costs reflected by the i.i.d. shock \(\varepsilon_i^t \) with mean \(\bar{\varepsilon} \) and support \([0, \varepsilon^u] \).

I assume that households make decisions in two stages:

1. **Morning**: \(\varepsilon_i^t \) and \(u_i^t \) are realized. Households decide how much to consume.

2. **Evening**: Households choose \(M_i^t, DL_i^{t+1} \) and \(DS_i^{t+1} \).

F.2.2 Instant payment technology

Introduction of IPS now impacts two idiosyncratic variables – \(u_i^t \) and \(\varepsilon_i^t \). The overall effect will depend on the magnitude of changes. Proposition 4 contains the results.\(^{41}\) I do not describe the banking side of the model because it is similar to the one described in Section F.1.4.

Proposition 4 Consider households’ problem in the standard economy defined in Section F.2.1. In partial equilibrium, i.e., with fixed interest rates and exogenous endowment, \(Y_t \),

\(^{41}\) Proos is in Appendix G.3.
1. increase in support of ε^i_t from $[0, \varepsilon^u]$ to $(\varepsilon^l, 1]$ in the evening of the preceding period leads to an increase in DS_t relative to DL_t and M_t;

2. increase in support of u^i_t from $[0, u^u]$ to $(u^l, 1]$ in the evening of the preceding period leads to an increase in DL_t relative to DS_t and M_t.

Proposition 4 states that the launch of an instant payment system that is available to small banks increases deposits of small banks relative to deposits of large banks if the technology alleviates shock to small bank depositors more than to large bank depositors. It is possible that although the technology was available to all banks, large banks used it better to provide additional payment convenience to their depositors. Parts 3 and 4 of the proposition show the results for the IPS that is available only to large banks.

In reality, both ε^i_t and u^i_t are likely to be affected. Then the ultimate question is which one is affected more. In more cashless economies (such as the US, Brazil, or Sweden), ε^i_t can be affected more, thus increasing bank competition. Since u^i_t also increases, the demand for cash should decline. However, it is possible that in developed economies, large banks can adopt technologies fast and offer them in a particularly convenient way, thus making u^i_t higher. The model thus generates the results from the empirical analysis.

G Model derivations and proofs

G.1 Proof of Proposition 1

□ Consider the households’ problem defined in Section F.1.1. For notation simplicity, I keep the i superscript only for idiosyncratic shocks. First-order conditions for trading and consumption stages are:

\[
[C_t]: \frac{1}{C_t} - \lambda_t - \mu_t \eta = 0 \quad \text{(G.19)}
\]

\[
[DL_t]: -\lambda_{t-1} + \beta \lambda_t (1 + r_t^{dt}) + \beta \mu_t = 0 \quad \text{(G.20)}
\]

\[
[DS_t]: -\lambda_{t-1} + \beta \lambda_t (1 + r_t^{dt}) + \beta \mu_t \mathbb{E}_{t-1} \varepsilon^i_t = 0 \quad \text{(G.21)}
\]
where λ_t and μ_t are Lagrange multipliers for constraints (F.10) and (F.11), respectively. FOCs also include complementary slackness conditions. Combining (G.20) and (G.21), I get the following equation:

$$
\lambda_t(r_t^{ds} - r_t^{dt}) = \mu_t(1 - E_{t-1}\epsilon^i_t)
$$ \((G.22)\)

First, since $E_t - 1 \epsilon^i_t \neq 1$, $\lambda_t \neq 0$, so equation (F.10) must bind. Second, if (F.11) does not bind, $m_t = 0$ and then $r_t^{ds} = r_t^{dt}$, since the payment convenience is not an issue for households. Although this can be the case for some households, I will focus on households with a less trivial case – when (F.11) binds. Since both constraint bind, we can equate consumption to get the following equation

$$
\eta W_t = DS_t(\epsilon^i_t - (1 + r_t^{ds})\eta) + DL_t(1 - (1 + r_t^{dt})\eta)
$$ \((G.23)\)

where $W_t = Y_t - DL_{t+1} - DS_{t+1}$ Combining (G.19) and (G.23) we get

$$
\lambda_t = \frac{\epsilon^i_t - (1 + r_t^{ds})\eta}{DL_t((1 + r_t^{dt})\epsilon^i_t - (1 + r_t^{ds})) + \epsilon^i_tW_t} - \eta\mu_t
$$ \((G.24)\)

Plugging (G.24) into (G.21) and using (G.22) we get the following expression for μ_t:

$$
\mu_t = \left[\beta \frac{\epsilon^i_t - (1 + r_t^{ds})\eta}{DL_t((1 + r_t^{dt})\epsilon^i_t - (1 + r_t^{ds})) + \epsilon^i_tW_t} (1 + r_t^{dt}) - \lambda_{t-1}\right] \frac{1}{\eta(1 + r_t^{dt}) - \beta}
$$ \((G.25)\)

I can derive a similar equation by expressing DS_t instead of DL_t in (G.23) and then plugging the result in (G.20). I then divide the expression by (G.25) and get the following equation:

$$
1 = \frac{1 - (1 + r_t^{dt})\eta}{\epsilon^i_t - (1 + r_t^{ds})\eta} \cdot \frac{DL_t((1 + r_t^{dt})\epsilon^i_t - (1 + r_t^{ds})) + \epsilon^i_tW_t}{DS_t((1 + r_t^{ds}) - \epsilon^i_t(1 + r_t^{ds})) + W_t}
$$ \((G.26)\)

When ϵ^i_t increases, $\frac{DL_t}{DS_t}$ decline if $\frac{DL_{t+1}}{DS_{t+1}}$ does not increase. To see why $\frac{DL_{t+1}}{DS_{t+1}}$ does not increase, let us consider the terminal periods of the model, T, which is finite by assumption.
At time T, households spend all assets they have on consumption:

$$C_T = \min \left\{ Y_T + DL_T(1 + r^d_T) + DS_T(1 + r^s_T), \frac{1}{\eta}(DL_T + \varepsilon^d_T, DS_T) \right\} \quad (G.27)$$

If the first component of (G.27) is larger, then $\lambda_T = 0$, so $E_{T-1}\varepsilon^d_T = 1$ – contradiction. Then, the second term must be bigger, so $\mu_T = 0$ and then, DS_T and DL_T do not depend on ε^d_T or any other shocks before time T. It means that $\frac{DL_{T+1}}{DS_{T+1}}$ decline as well as all deposit ration up to time t, which proves all statements in the proposition. ■

G.2 Proof of Proposition 3

□ First order conditions for the problem stated in Section F.1.4 are

$$\beta(-\phi + \lambda_{t+1}(1 - \phi)) + \lambda_t \frac{1}{1 + r^d_{t+1}} - \mu_t \frac{1}{1 + r^d_{t+1}} = 0 \quad (G.28)$$

$$\beta(\phi - \lambda_{t+1}(1 - \phi)) - \lambda_t \frac{1}{1 + r^l_{t+1}} + \mu_t \xi \frac{1}{1 + r^l_{t+1}} = 0 \quad (G.29)$$

Where λ_t and μ_t are Lagrange multipliers for constraints (F.13) and (F.14), respectively. Summing (G.28) and (G.29) we get

$$\lambda_t \left(\frac{1}{1 + r^d_{t+1}} - \frac{1}{1 + r^l_{t+1}} \right) = \mu_t \left(\frac{1}{1 + r^d_{t+1}} - \xi \frac{1}{1 + r^l_{t+1}} \right) \quad (G.30)$$

One of the constraints has to be non-binding since two constraints can exactly pin down deposits and loans. If they do not, then the solution is in corner. First, consider the case of $\lambda_t > 0$, hence, $\mu_t = 0$. Then, $r^d_{t+1} = r^l_{t+1}$, so $(1 - \phi)N_t - (1 + r^d_{t+1}) = L_{t+1} - D_{t+1}$. If D_{t+1} is rising, r^d_{t+1} is falling. Since leverage constraint does not bind, L_{t+1} does not change immediately. However, since r^l_{t+1} falls, L_{t+1} rises due to changed loan demand. Now consider the case of $\mu_t > 0$. Then, $\lambda_t = 0$ and $1 + r^d_{t+1} = \frac{1}{\xi}(1 + r^l_{t+1})$. Then, increase in deposits leads to an increase in loans (binding leverage constraint) which leads to a reduction in r^l_{t+1} and consequent reduction in r^d_{t+1}, which concludes the proof of the proposition. ■
□ Consider the households’ problem defined in Section F.1.1. For notation simplicity, I keep the i superscript only for idiosyncratic shocks. First-order conditions for trading and consumption stages are:

\[
[C_t]: \quad \frac{1}{C_t} - \lambda_t - \mu_t \eta^s - \gamma_t \eta^f = 0 \quad \text{(G.31)}
\]

\[
[DL_t]: \quad -\lambda_{t-1} + \beta \lambda_t (1 + r_{dt}^t) + \beta \gamma_t E_t - 1 u_t + \beta \mu_t = 0 \quad \text{(G.32)}
\]

\[
[DS_t]: \quad -\lambda_{t-1} + \beta \lambda_t (1 + r_{ds}^t) + \beta \mu_t E_t - 1 \varepsilon_t = 0 \quad \text{(G.33)}
\]

\[
[M_t]: \quad -\lambda_{t-1} + \beta \lambda_t + \beta \mu_t + \beta \gamma_t = 0 \quad \text{(G.34)}
\]

where λ_t, μ_t, and γ_t are Lagrange multipliers for constraints (F.16), (F.18), and (F.17), respectively. FOCs also include complementary slackness conditions. Since the problem is fairly similar to the cashless one, I will show that it is possible to transform one setting in another. Note that we can sum (F.18) and (F.17) to get

\[
(\eta^s + \eta^f) C_t = DL_t (1 + u_t') + \varepsilon_t' DS_t + 2 M_t \quad \text{(G.35)}
\]

Denote $\eta^s + \eta^f = \eta$ and $W_t = Y_t - DL_{t+1} - DS_{t+1} - M_{t+1} + \frac{2 - \eta}{\eta} M_t$. Then, the problem becomes similar to the one in a cashless economy. Conducting similar steps, we can derive the expression analogous to (G.26):

\[
1 = \frac{1 + u_t' - (1 + r_{dt}^t) \eta}{\varepsilon_t' - (1 + r_{ds}^t) \eta} \cdot \frac{DL_t (-\varepsilon_t' u_t' + (1 + r_{dt}^t) \varepsilon_t' - (1 + r_{ds}^t) + \varepsilon_t' W_t)}{DS_t ((1 + r_{dt}^t) - \varepsilon_t'(1 + r_{ds}^t)) + (1 + u_t') W_t} \quad \text{(G.36)}
\]

If u_t' rises, $\frac{DL}{DS}$ rises too, provided future ratios do not fall (the condition can be shown following same steps as in Appendix G.1). If ε_t' rises, $\frac{DL}{DS}$ falls, which concludes the proof. ■