Instant Payment Systems and Competition for Deposits

Sergey Sarkisyan

Wharton School at University of Pennsylvania

NBER Summer Institute

July 12, 2023

Motivation and question

- ullet Substantial frictions when making payments and transfers \Rightarrow demand for payment technologies
- Instant payment systems (IPS) bank-dependent technologies for fast payments without fees for users (unlike credit cards)
- Examples: UPI (India), FedNow (US), Pix (Brazil), Swish (Sweden)

Question: How do instant payment systems impact banking landscape?

Introduction of Pix in Brazil

• Introduction of Pix in Brazil in November 2020

• Pix became a dominant means of payments

Larger banks required to offer, smaller banks have cheap access

• >95% of banks joined \Rightarrow potential changes to market concentration

Overview of the results

- Granular data on Pix transactions
- 1. Persistent reduction in deposit market concentration
- \$200 ↑ in per capita Pix transactions ⇒ ↑ from 5 to 6 equally large banks
- Small banks increase deposits and reduce interest rates relative to large banks
- 2. Increase in deposits and loans

Channel: banks offer more payment convenience, especially small banks

Pix in Brazil

- Launched in November 2020 by the central bank for within-second transfers and payments
- Requires bank account to use large banks were forced to offer
- \bullet Offered by >95% intermediaries and used by >65% people in all municipalities
- Free for banked households, cheap for banks
- ullet Cheap for merchants fees $\sim\!0.2\%$ compared to 2.2% credit card fee

Other payment methods

Banking landscape in Brazil before Pix

- ullet Concentrated deposit markets (national HHI $\simeq 0.17$ vs 0.2 in the US)
- Large banks pay lower deposit rates than small banks
 Large banks banks with > 50 million depositors

Banking landscape in Brazil before Pix

- ullet Concentrated deposit markets (national HHI $\simeq 0.17$ vs 0.2 in the US)
- Large banks pay lower deposit rates than small banks
 Large banks banks with > 50 million depositors

	Average large bank	Average small bank
Regional offices	2,064	52
Number of ATMs	23,550	1,763
Online banking app users	27,5 million	0.8 million
Salary accounts	w.p. 100%	w.p. 5.2%
Credit card user base	15 million	1.7 million

Instant payments

Banking landscape in Brazil before Pix

- ullet Concentrated deposit markets (national HHI $\simeq 0.17$ vs 0.2 in the US)
- Large banks pay lower deposit rates than small banks
 Large banks banks with > 50 million depositors

	Average large bank	Average small bank
Regional offices	2,064	52
Number of ATMs	23,550	1,763
Online banking app users	27,5 million	0.8 million
Salary accounts	w.p. 100%	w.p. 5.2%
Credit card user base	15 million	1.7 million

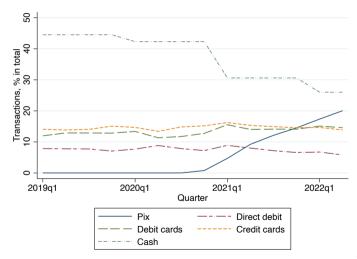
Large banks dominated small banks in terms of payment convenience

Instant payments

July 12, 2023 5 / 22

Transfers and payments before Pix

• Wait times and/or fees for transfers unless within the same bank


• 2.2% credit card fee, 1% debit card fee – merchants passed on customers

ullet Cashless payment slip (*Boleto Bancario*) only available to clients of $\sim 15\%$ of banks

Cash-only 'underground economy' – roughly 20% of Brazilian GDP

◆□▶ ◆□▶ ◆■▶ ◆■▶ ●□ りゅ○

Pix dominates other electronic means of payments

Instant payments

Novel dataset

- Municipality-level monthly data on Pix transactions (Central Bank of Brazil)
 - Number of transactions, value of transactions
- Branch-level monthly data on banks' balance sheet (ESTBAN)
- Deposits by type, loans, financing, assets, alternative funds
- Bank-level data on interest rates and equity (Central Bank of Brazil and Bloomberg)
- Deposit rates (interest expense), personal loan rates, equity returns
- Municipality-level demographic and economic data (IBGE)
- HHI, Census, capital investments, savings, GDP
- Macro variables (IPEA and Central Bank of Brazil)

Instant payments

Benchmark empirical strategy

• How does Pix impact deposits of small banks?

$$\log D_{imt} = \delta \cdot \log Pix_{mt} \cdot S_i + \gamma X_{imt} + \theta_t + \alpha_i + \eta_{mt} + \varepsilon_{imt}$$

municipality m, bank i, month t, S_i – small bank dummy time window – 3 months before the Pix launch and 3 months after

• How does Pix impact interest rates?

$$r_{it} = \delta \cdot \log Pix_{mt} \cdot S_i + \gamma X_{imt} + \theta_t + \alpha_i + \varepsilon_{imt}$$

municipality m, bank i, month t, S_i – small bank dummy time window – 3 months before the Pix launch and 3 months after

- 4 □ > 4 ∰ > 4 분 > 4 분 > 분 |= り < ©

9 / 22

Instant payments July 12, 2023

Small banks increase deposits relative to large banks

$$\log D_{imt} = \delta \cdot \log Pix_{mt} \cdot S_i + \gamma X_{imt} + \theta_t + \alpha_i + \eta_{mt} + \varepsilon_{imt}$$

	Dependent variable:			
	Checking deposits	Saving deposits	Time deposits	
	(1)	(2)	(3)	
Pix · Small	0.030***	0.032***	0.043***	
	(0.005)	(0.005)	(0.006)	
Bank FE	Yes	Yes	Yes	
Time FE	Yes	Yes	Yes	
$Muni \times Time \; FE$	Yes	Yes	Yes	
Controls	Yes	Yes	Yes	
Observations	32,097	32,097	32,097	
R ²	0.882	0.961	0.923	

Standard errors are clustered at the municipality level

Small banks reduce interest rates relative to large banks

$$r_{it} = \delta \cdot \log Pix_{mt} \cdot S_i + \gamma X_{imt} + \theta_t + \alpha_i + \varepsilon_{imt}$$

	Dependent variable:				
	Depo	sit rates	Public loans	Private Ioans	
	(1)	(2)	(3)	(4)	
Pix	-2.894	-3.523	0.021***	-0.000	
1 1/2	(1.881)	(2.671)	(0.003)	(0.005)	
Pix · Small	-1.372***	-1.365***	-0.047***	-0.016***	
	(0.099)	(0.166)	(0.000)	(0.001)	
Denominator	All deposits	Time deposits	_	-	
Bank FE	Yes	Yes	Yes	Yes	
Time FE	Yes	Yes	Yes	Yes	
Controls	Yes	Yes	Yes	Yes	
Observations	18,247	18,196	35,256	34,805	
R ²	0.122	0.963	0.932	0.974	

Standard errors are clustered at the municipality level

Identification challenges

1. Reverse causality – Pix is more popular in areas with many banks (Details)

2. Potential omitted variables – political beliefs unobservables, COVID stimuli, etc

Easing of COVID-19 restrictions

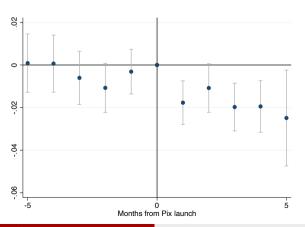
- Easing of COVID-19 restrictions in Brazilian municipalities by September 2020
- Treated eased restrictions, control did not ease restrictions
- Assumption: treatment in Sep $\Rightarrow Pix_{mNov} \Rightarrow HHI_{mNov} HHI_{mOct}$
- Condition on October 2020 Pix introduced in November 2020
- Heteroskedasticity-based identification Rigobon (2003), Rigobon and Sack (2004),
 Hebert and Schreger (2017) Details

Instant payments July

Pix increases deposits and loans of small banks relative to large banks

$$\log D_{imt} = \delta \cdot \widehat{\log P_{ixmt}} \cdot S_i + \gamma X_{imt} + \eta_{mt} + \varepsilon_{imt}$$

	Dependent variable:			
	Checking deposits	Saving deposits	Time deposits	Total loans
	(1)	(2)	(3)	(4)
Pix · Small	0.033*** (0.008)	0.004 (0.011)	0.150*** (0.006)	0.037*** (0.008)
Muni × Time FE	Yes	Yes	Yes	Yes
Controls	Yes	Yes	Yes	Yes
Observations	7,123	7,123	7,123	7,123
R^2	0.486	0.402	0.027	0.254



Pix causes a reduction in deposit market concentration

$$HHI_{m,t+s} = \theta \widehat{PixPerCap}_{mt} + \delta HHI_{m,t-1} + \gamma X_{mt} + \eta_{mt}$$

\$200 ↑ in per capita Pix transactions ⇒ ↑ from 5 to 6 equally large banks

Pix increases deposits and loans

$$\log D_{imt} = \delta \cdot \widehat{\log P_{ix_{mt}}} + \gamma X_{imt} + \theta_t + \alpha_i + \eta_{mt} + \varepsilon_{imt}$$

		Dependent variable:				
	Checking deposits (1)	Saving deposits	Time deposits	Total loans (4)		
	(1)	(2)	(3)	(4)		
Pix	0.037***	0.014***	0.040***	0.024***		
	(0.003)	(0.001)	(0.007)	(0.002)		
Controls	Yes	Yes	Yes	Yes		
Observations	4,488	4,488	4,488	4,488		
R^2	0.697	0.699	0.449	0.604		

Why? Payment convenience

- Pix makes deposits more convenient relative to cash inflow of deposits
- Should be especially relevant for financially constrained households
- Small banks join Pix boost in their payment convenience relative to large banks
- Less relevant for constrained households
- Costs of opening new bank account, social stimuli through large banks
- Interact with municipality-level income per capita

Instant payments

Small bank deposits increase more in less financially constrained municipalities

$$\log D_{imt} = \delta \cdot \widehat{\log Pix_{mt}} \cdot S_i \cdot PerCapIncome_m + \gamma X_{imt} + \eta_{mt} + \varepsilon_{imt}$$

		Dependent va	riable:	
	Checking deposits	Saving deposits	Time deposits	Total loans
	(1)	(2)	(3)	(4)
Pix · Income	-0.019	-0.038***	-0.304***	-0.049***
	(0.015)	(0.010)	(0.036)	(0.010)
Pix · Small · Income	0.090***	0.060***	0.778***	0.058
	(0.032)	(0.026)	(0.084)	(0.035)
Controls	Yes	Yes	Yes	Yes
Observations	7,123	7,123	7,123	7,123
R^2	0.501	0.406	0.034	0.292

4□ > 4□ > 4□ > 4□ > 4□ = 900

18 / 22

Instant payments July 12, 2023

Bank deposits increase less in less financially constrained municipalities

$$\log D_{imt} = \delta \cdot \widehat{\log Pix_{mt}} \cdot S_i \cdot PerCapIncome_m + \gamma X_{imt} + \eta_{mt} + \varepsilon_{imt}$$

		Dependent va	riable:	
	Checking deposits	Saving deposits	Time deposits	Total loans
	(1)	(2)	(3)	(4)
Pix · Income	-0.019	-0.038***	-0.304***	-0.049***
	(0.015)	(0.010)	(0.036)	(0.010)
Pix · Small · Income	0.090***	0.060***	0.778***	0.058
	(0.032)	(0.026)	(0.084)	(0.035)
Controls	Yes	Yes	Yes	Yes
Observations	7,123	7,123	7,123	7,123
R ²	0.501	0.406	0.034	0.292

◆ロト ◆部ト ◆恵ト ◆恵ト 恵田 めので

Deposit demand estimation

• How does Pix impact deposit demand conditional on interest rates?

- IO-style model of deposit demand

• What if Pix were **not introduced** or were available to **only** large banks?

- Study model counterfactuals

Brief estimation results

- Deposit rates positively impact deposit demand
- Pix increases demand for small bank deposits
- Deposit demand becomes more sensitive to deposit rates after Pix

Brief estimation results

- Deposit rates positively impact deposit demand
- Pix increases demand for small bank deposits
- Deposit demand becomes more sensitive to deposit rates after Pix
- Deposit markets more concentrated absent Pix
- Deposit markets more concentrated if Pix available only to large banks

Conclusion

- Instant payment systems can promote deposit market competition
- Implications for monetary policy, investments and access to credit

 Pix in Brazil leads to an increase in deposits and loans and a reduction in bank interest rates

- Implications for consumers' welfare and choice of payment methods

Model set-up

- Households (mass W_t) choose to invest one dollar to one out of J banks or cash
- Banks face deposit demand and choose their deposits and assets following the equity ratio
 Capital ratios

All banks offer instant payment systems starting from November 2020

• Banks are split into large and small based on number of depositors

1 / 57

Instant payments July 12, 2023

Households' problem

Households choose the best investment to maximize their utility:

$$\max_{j \in \mathscr{A}^d} u_{i,j}^t = \alpha^d r_j^t + \beta^d p_j^t + \delta^d p_j^t \ell_j + \gamma^d x_j^t + \xi_j + \varepsilon_{i,j}^t$$

- r_j^t deposit interest rate of bank j
- p_i^t mean of Pix values in municipalities of bank j presence
- ℓ_j dummy for large banks
- ξ_j product invariant quality difference (bank FEs)
- $\varepsilon_{i,i}^t$ relation-specific shock, follows a generalized extreme-value distribution

4□ > 4□ > 4□ > 4□ > 4□ = 900

2 / 57

Instant payments July 12, 2023

Large banks originate riskier loans and rely on uninsured financing

$$\log Y_{imt} = \delta \cdot \log Pix_{mt} \cdot S_i + \gamma X_{imt} + \theta_t + \alpha_i + \eta_{mt} + o_{imt}$$

		Dependent variable:			
	Loans	Loans Financing Alternative for			
	(1)	(2)	(3)		
Pix · Small	0.005	-0.019**	0.198***		
rix · Siliali	(0.004)	(0.008)	(0.017)		
Bank FE	Yes	Yes	Yes		
Time FE	Yes	Yes	Yes		
$Muni \times Time \; FE$	Yes	Yes	Yes		
Controls	Yes	Yes	Yes		
Observations	32,097	32,097	27,840		
R^2	0.928	0.949	0.733		

Standard errors are clustered at the municipality level

Identification concerns

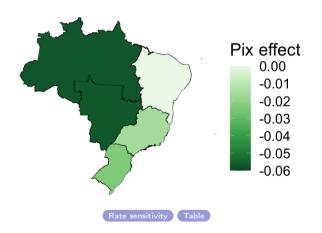
• Identification concern 1: interest rates are correlated with unobservable deposit demand

- Fixed costs and provision for loan losses as instruments

• Identification concern 2: Pix is correlated with unobservable deposit demand

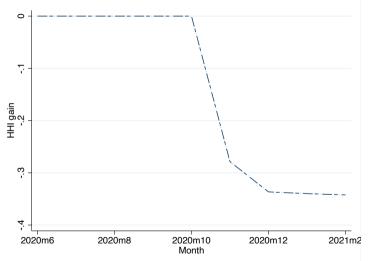
- Easing of COVID-19 restrictions as instruments

Instant payments July 12, 2023

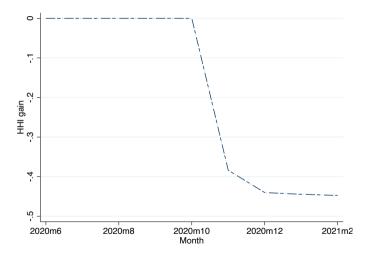

GMM estimation results

Parameter	Symbol	Estimate	Standard error
Sensitivity to deposit rates	$lpha^d$	0.80***	(0.141)
Sensitivity to Pix	β^d	0.107***	(0.025)
Additional sensitivity to Pix for large banks	δ^d	-0.023***	(0.004)
Observations		2,097	
R ² 0.980			

- 1 p.p. \uparrow in deposit rates \Rightarrow 0.8% \uparrow in deposit share
- 1 % \uparrow in Pix \Rightarrow 2.3% \uparrow in small bank deposit shares relative to large banks



Regional estimation


HHI would have increased without Pix

Instant payments

HHI would have increased if Pix were available only to large banks

Impact of Boleto

Conclusion

- Instant payment systems can promote deposit market competition
- Implications for monetary policy, investments and access to credit

 Pix in Brazil leads to an increase in deposits and loans and a reduction in bank interest rates

- Implications for consumers' welfare and choice of payment methods

IPS examples

Country	System	Launch year	Inventor
Australia	NPP	2018	Private
Brazil	Pix	2020	Central Bank
Denmark	MobilePay	2013	Central Bank
Hong Kong	FPS	2018	Central Bank
India	UPI	2016	Central Bank
Kenya	M-Pesa	2007	Private
Sweden	Swish	2014	Private
United States	Zelle	2017	Private

Other payment methods in Brazil

• Debit and credit cards used to be the most popular means of payment

Boleto Bancário has been launched in 1993 for retail payments:

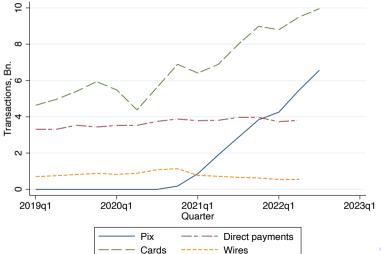
- Piece of paper (now electronic) to scan in the bank app

• TED is used for wholesale payments

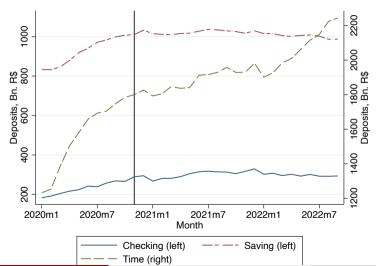
Credit and debit card fees in Brazil

• Credit card fees are around 2.2%

• Debit card fees are around 1%


• Merchants charge customers for fees – surcharges are legal

Paying in cash and Pix is often cheaper



Electronic means of payment in Brazil, quantities

Deposits in Brazil

Data definitions

Name	Source	Frequency	Point of observation
Pix volume	Banco Central	Monthly	Municipality
Pix transactions	Banco Central	Monthly	Municipality
Assets	ESTBAN	Monthly	Branch
Deposits	ESTBAN	Monthly	Branch
Loans	ESTBAN	Monthly	Branch
Reserves	ESTBAN	Monthly	Branch
Loan rates	Banco Central	Monthly	Bank
Investments	IPEA	Annual	Municipality
Savings	IPEA	Annual	Municipality
GDP per capita	IBGE	Annual	Municipality
Demographics	IBGE	Only 2010	Municipality
Inflation	Banco Central	Monthly	Country
Exchange rates	Banco Central	Monthly	Country
Unemployment	Banco Central	Monthly	Country

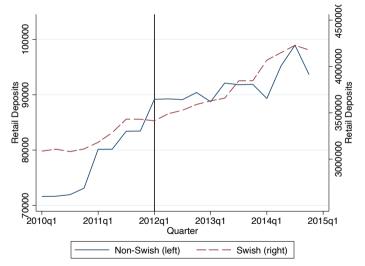
Summary statistics

		Large bar	ıks		Small bar	nks
	Mean	Median	Std. dev.	Mean	Median	Std. dev
Panel A: Before Pix launch (ES	STBAN)					
Checking deposits (bn. R\$)	21.1	21	5.5	0.4	0.09	1
Saving deposits (bn. R\$)	117.3	117.3	21.7	1.3	0	6
Time deposits (bn. R\$)	35.1	34.4	7.6	3.4	1.1	8.1
Total loans (bn. R\$)	58.5	58.7	11.6	2.2	0.6	4.3
Total financing (bn. R\$)	5.5	5.5	5.1	0.8	0.08	2.3
Total assets (tn. R\$)	2.9	2.8	2.4	0.1	0.02	0.3
Checking deposits (% in total)	12	12	3.3	23	8.1	33
Saving deposits (% in total)	67	67	9.2	6.2	0	18
Time deposits (% in total)	20	20	5.4	71	90	35
Observations (branch×month)		8,250			18,134	ļ.
Observations (bank $ imes$ month)		4			194	
Panel B: After Pix launch (EST	ΓBAN)					
Checking deposits (bn. R\$)	22.5	22.9	6.8	0.4	0.09	1.2
Saving deposits (bn. R\$)	120.3	120.4	22.2	1.4	0	6.3
Time deposits (bn. R\$)	35.9	36.2	9.5	3.6	1.1	8.7
Total loans (bn. R\$)	61.5	61.8	11.5	2.5	0.7	4.5
Total financing (bn. R\$)	5.5	5.5	5.1	0.8	0.06	2.3
Total assets (tn. R\$)	3.1	3	2.8	0.1	0.03	0.3
Checking deposits (% in total)	13	13	3.2	23	7.2	32
Saving deposits (% in total)	67	67	10	6.2	0	18
Time deposits (% in total)	20	20	6	71	88	35
Observations (branch×month)		8,250			17,985	(□)

Instant payments

16 / 57

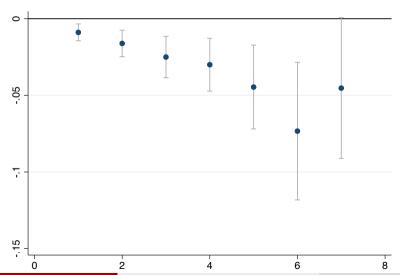
Boleto increased deposit market concentration


	Dependent variable:			
	Checking deposits	Saving deposits	Time deposits	
	(1)	(2)	(3)	
Boleto · Small	-0.029^*	-0.761***	0.271***	
	(0.016)	(0.236)	(0.095)	
Bank FE	Yes	Yes	Yes	
Time FE	Yes	Yes	Yes	
Controls	Yes	Yes	Yes	
Observations	509,088	509,088	509,088	
R ²	0.894	0.860	0.812	

Swish increases deposit market concentration slightly

Pix impact is dampened in concentrated areas

	Dependent variable:						
	Checking	g deposits	Saving	Saving deposits		Time deposits	
	(1)	(2)	(3)	(4)	(5)	(6)	
Pix	0.043 (0.027)	0.121* (0.066)	-0.078** (0.038)	-0.083 (0.090)	0.256*** (0.048)	0.699*** (0.116)	
нні	0.044** (0.018)	-0.020 (0.019)	-0.016 (0.027)	-0.064** (0.025)	-0.257*** (0.046)	-0.213*** (0.045)	
Pix · Large	-0.016** (0.006)	-0.024*** (0.008)	-0.025*** (0.006)	-0.026*** (0.008)	$-0.019^* \ (0.011)$	-0.047*** (0.015)	
HHI · Large		0.141*** (0.013)		0.100*** (0.020)		-0.040 (0.030)	
Pix · HHI		0.001 (0.011)		-0.008 (0.013)		0.069*** (0.020)	
Pix · Large · HHI		0.037*** (0.007)		0.019*** (0.007)		0.041*** (0.014)	
Bank FE	Yes	Yes	Yes	Yes	Yes	Yes	
Time FE	Yes	Yes	Yes	Yes	Yes	Yes	
Controls	Yes	Yes	Yes	Yes	Yes	Yes	
Observations R ²	36,496 0.852	36,496 0.853	36,496 0.945	36,496 0.945	36,496 0.900	36,496 0.900	


Bootstrapped standard errors

	De	Dependent variable:			
	Checking deposits	Saving deposits	Time deposits		
	(1)	(2)	(3)		
Pix · Small	0.030***	0.032**	0.043***		
	(0.010)	(0.016)	(0.015)		
Bank FE	Yes	Yes	Yes		
Time FE	Yes	Yes	Yes		
$Muni \times Time \; FE$	Yes	Yes	Yes		
Controls	Yes	Yes	Yes		
Observations	32,097	32,097	32,097		
R ²	0.882	0.961	0.923		

Pix does not impact the number of bank branches

21 / 57

Deposit betas

- HHI does not fully capture deposit market power
- Payment convenience itself is a non-location source of market power
- Use deposit betas: for each bank run

$$\log D_{it} = \beta \Delta i_t + \gamma X_{it} + u_{it}$$

 \bullet where i_t is a Selic rate

Pix increases deposit betas of large banks relative to small banks

	Dependent variable:					
	Saving	deposits	Time o	leposits		
	(1)	(2)	(3)	(4)		
Pix	0.004***	0.042***	0.031***	0.104***		
	(0.000)	(0.004)	(0.001)	(0.038)		
ННІ	0.000	0.001***	-0.013***	-0.013***		
	(0.000)	(0.000)	(0.002)	(0.003)		
Small	-0.015***	-0.015***	-0.022***	-0.023***		
	(0.000)	(0.000)	(0.001)	(0.001)		
$Pix \cdot Small$	-0.022***	-0.024***	-0.039***	-0.043***		
	(0.001)	(0.000)	(0.003)	(0.002)		
Time FE	No	Yes	No	Yes		
Controls	Yes	Yes	Yes	Yes		
Observations	297,654	297,654	297,654	297,654		
R ²	0.043	0.211	0.008	0.024		

Pix is more popular in competitive areas

	Dependent variable:					
	Р	ix	Initial Pix			
	(1)	(2)	(3)			
HHI	-0.107***	-0.107***	-0.0439***			
	(0.012)	(0.012)	(0.004)			
Time FE	No	Yes	Cross-Section			
Controls	Yes	Yes	Yes			
Observations	6,360	6,360	3,179			
R ²	0.239	0.239	0.169			

• Consider the model of simultaneous equations:

$$Pix_{mt} = \delta D_{mt} + \gamma_P F_{mt} + u_{mt}$$

 $D_{mt} = \alpha Pix_{mt} + \gamma_D F_{mt} + \varepsilon_{mt}$

• Consider the model of simultaneous equations:

$$Pix_{mt} = \delta D_{mt} + \gamma_P F_{mt} + u_{mt}$$

 $D_{mt} = \alpha Pix_{mt} + \gamma_D F_{mt} + \varepsilon_{mt}$

- Standard IV: treatment $\Rightarrow Pix_{mNov} \Rightarrow D_{mNov} D_{mOct}$
- Assumptions on u_{mt} and $arepsilon_{mt}$

• Consider the model of simultaneous equations:

$$Pix_{mt} = \delta D_{mt} + \gamma_P F_{mt} + u_{mt}$$

$$D_{mt} = \alpha Pix_{mt} + \gamma_D F_{mt} + \varepsilon_{mt}$$

- Standard IV: treatment $\Rightarrow Pix_{mNov} \Rightarrow D_{mNov} D_{mOct}$
- Assumptions on u_{mt} and $arepsilon_{mt}$
- m' treated, m^0 control. Identification assumptions:

1.
$$(\sigma_{m'Nov}^u)^2 - (\sigma_{m'Oct}^u)^2 > (\sigma_{m^0Nov}^u)^2 - (\sigma_{m^0Oct}^u)^2$$

• Consider the model of simultaneous equations:

$$Pix_{mt} = \delta D_{mt} + \gamma_P F_{mt} + u_{mt}$$

 $D_{mt} = \alpha Pix_{mt} + \gamma_D F_{mt} + \varepsilon_{mt}$

- Standard IV: treatment $\Rightarrow Pix_{mNov} \Rightarrow D_{mNov} D_{mOct}$
- Assumptions on u_{mt} and ε_{mt}
- m' treated, m^0 control. Identification assumptions:

1.
$$(\sigma_{m'Nov}^u)^2 - (\sigma_{m'Oct}^u)^2 > (\sigma_{m^0Nov}^u)^2 - (\sigma_{m^0Oct}^u)^2$$

2.
$$(\sigma_{m'Nov}^{\varepsilon})^2 - (\sigma_{m'Oct}^{\varepsilon})^2 = (\sigma_{m^0Nov}^{\varepsilon})^2 - (\sigma_{m^0Oct}^{\varepsilon})^2$$

3.
$$(\sigma_{m'Nov}^F)^2 - (\sigma_{m'Oct}^F)^2 = (\sigma_{m^0Nov}^F)^2 - (\sigma_{m^0Oct}^F)^2$$
 COVID impact

- ◀ □ ▶ ◀ ∰ ▶ ◀ 볼 ▶ 4 볼 ▶ · 臺| 달 · ~ 의 익 ⊙

Rigobon-Sack IV procedure

- Keep October and November in the sample
- First-stage regression:

$$extit{PixPerCap}_{mt} = lpha extit{Eased}_m + heta extit{Pix}_t + \gamma extit{Eased}_m extit{Pix}_t + \eta extit{Eased}_m extit{PixPerCap}_{mt} + u_{mt}$$

- Eased_m = 1 for treated municipalities, $Pix_t = 1$ for November 2020
- Second-stage regression:

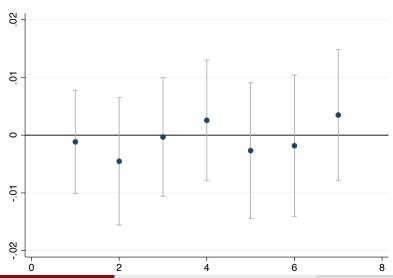
$$HHI_{m,t+s} = \theta Pix \widehat{PerCap_{mt}} + \delta HHI_{m,t} + \gamma X_{mt} + \eta_{mt}$$

26 / 57

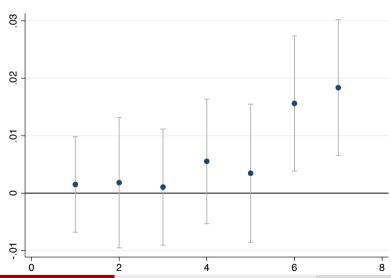
Instant payments July 12, 2023

COVID restriction did not increase deposits

	Dependent variable:					
	Checkin	g deposits	Saving d	eposits	Time deposits	
	(1)	(2)	(3)	(4)	(5)	(6)
Masks	-0.048 (0.092)		-0.152** (0.076)		-0.371 (0.287)	
Isolation		-0.098*** (0.034)		-0.014 (0.032)		-0.142 (0.129)
Controls	Yes	Yes	Yes	Yes	Yes	Yes
Observations R ²	2,326 0.773	2,331 0.774	2,326 0.792	2,331 0.793	2,326 0.486	2,331 0.487



IV first-stage estimation


	Dependent variable:				
	Pix				
	(1)	(2)	(3)	(4)	
Eased	-0.128*** (0.027)	-0.128*** (0.027)			
Post Pix	13.750*** (0.037)	(0.021)	13.750*** (0.041)		
Eased · Post Pix	0.357*** (0.045)	0.357*** (0.045)	0.357*** (0.050)	0.357*** (0.050)	
Municipality FE Time FE	No No	No Yes	Yes No	Yes Yes	
Controls	Yes	Yes	Yes	Yes	
Observations	7,124	7,124	7,122	7,122	
R^2	0.984	0.984	0.986	0.986	

Placebo test: 2018

Placebo test: 2019

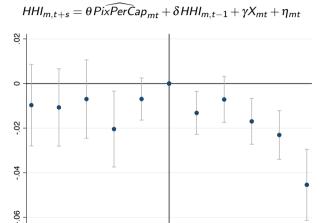
Instrumenting access to Pix

• Access to 4G and 5G internet in Brazilian municipalities as an instrument for Pix access

• Relevance: Pix is used more in areas with access to 4G and 5G internet

• Exclusion: Access to internet impacts deposit competition only via Pix

Data from Anatel



First-stage results: access to Pix

	Dependent variable:			
	Per Capita Pix			
	(1) (2)			
High Speed	-0.017***	-0.017***		
	(0.001)	(0.001)		
Post Pix	12.87***			
	(0.036)			
High Speed · Post Pix	0.057***	0.057***		
	(0.002)	(0.002)		
Time FE	No	Yes		
Controls	Yes	Yes		
Observations	5,719	5,719		
R^2	0.985	0.985		

Second-stage results: access to Pix

Months from Pix launch

Cross-sectional Rigobon-Sack results

	Dependent variable:					
	Checking deposits	Time deposits	Total loans			
	(1)	(2)	(3)	(4)		
Pix	3.340***	2.813***	12.00***	2.889***		
	(0.359)	(0.337)	(1.905)	(0.474)		
Controls	Yes	Yes	Yes	Yes		
Observations	2,243	2,243	2,243	2,243		
R ²	0.790	0.806	0.491	0.693		

Rigobon-Sack with bootstrapped standard errors

	Dependent variable:					
	Checking deposits	Saving deposits	Time deposits	Total loans		
	(1)	(2)	(3)	(4)		
Pix	3.340***	2.813***	12.00***	2.889***		
	(0.352)	(0.332)	(1.992)	(0.477)		
Controls	Yes	Yes	Yes	Yes		
Observations	2,243	2,243	2,243	2,243		
R ²	0.790	0.806	0.491	0.693		

Standard IV results

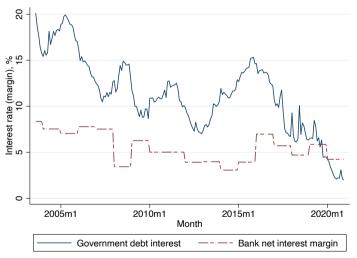
	Dependent variable:				
	Checking deposits	Saving deposits	Time deposits	Total loans	
	(1)	(2)	(3)	(4)	
Pix	0.013**	-0.011**	-0.051**	0.015**	
1 12	(0.006)	(0.005)	(0.024)	(0.007)	
Pix · Small	0.029**	0.035***	0.113**	0.005	
	(0.012)	(0.011)	(0.047)	(0.016)	
Controls	Yes	Yes	Yes	Yes	
Observations	7,123	7,123	7,123	7,123	
R ²	0.653	0.598	0.384	0.526	

Pix does not increase GDP per capita in 2020

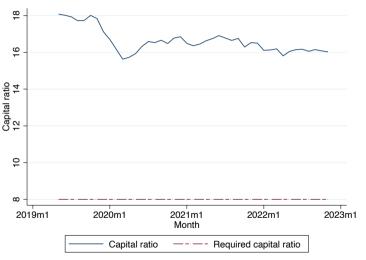
	Dependent variable:		
	HC	Standard IV	
	(1)	(2)	
Pix	-0.004*	-0.005***	
	(0.002)	(0.002)	
C t l -	V	V	
Controls	Yes	Yes	
Observations	7,124	7,124	
R ²	0.426	0.426	

Pix increases capital investments and savings

	Dependent variable:			
	Investments 2021	Investments 2020	Savings 2021	Savings 2020
	(1)	(2)	(3)	(4)
Pix	0.148***	0.139***	0.030***	-0.013***
	(0.0187)	(0.0182)	(0.00586)	(0.00325)
Lag	0.545***	0.584***	1.003***	0.925***
	(0.021)	(0.018)	(0.009)	(0.008)
Demographic controls	Yes	Yes	Yes	Yes
Economic controls	Yes	Yes	Yes	Yes
Observations	3,152	3,166	3,089	3,178
R^2	0.727	0.756	0.984	0.994


Large bank equity returns drop relative to small banks

	Dependent variable:			
	Equity returns			
	(1)	(2)	(3)	(4)
Pix	0.015*** (0.004)	0.015 (0.010)	0.015*** (0.004)	0.014 (0.010)
Large	0.003 (0.010)	0.002 (0.009)	0.0002 (0.013)	-0.0001 (0.011)
Pix · Large	-0.002 (0.015)	-0.002 (0.013)	-0.002 (0.015)	-0.001 (0.013)
Constant	-0.005* (0.003)	0.008 (0.007)	-0.002 (0.008)	0.011 (0.009)
Bank FE Time FE Observations	No No 314	No Yes 314	Yes No 314	Yes Yes 314
R ²	0.053	0.349	0.087	0.386



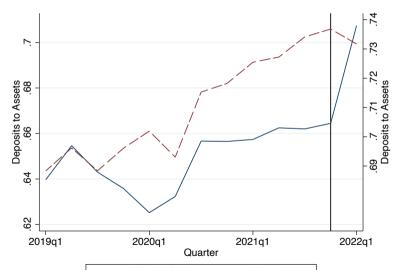
Net interest margins of Brazilian banks

Capital ratios of Brazilian banks

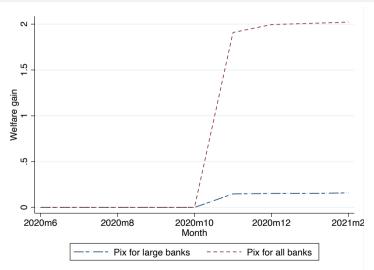
CBDC

- Central Bank Digital Currency (CBDC) is a digital analog of cash
- 90% of central banks in the world consider CBDC, two already adopted one
- Main concern is that households will prefer CBDC to bank deposits crowding-out effect which in turn leads to a contraction in lending
- Literature claims that CBDC will crowd out bank deposits
- CBDC is an instant payment system as well

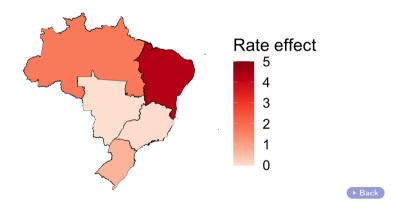
Data


• Nigeria is the largest country to have launched CBDC - e-Naira in October 2021

• Hand-collect banking data from Nigeria


• Hand-collect banking data from Kenya to compare two neighboring countries

CBDC increases deposits in Nigeria



Pix launch is welfare-improving

Regional estimation: deposit rate sensitivity

Regional estimation table

Parameter	Symbol	Estimate	Standard error
Panel A: North			
Sensitivity to deposit rates	α^d	0.732***	(0.253)
Sensitivity to Pix	β^d	-0.721***	(0.151)
Additional sensitivity to Pix for large banks	δ^d	-0.057***	(0.011)
R ²	0.984		
Panel B: Northeast			
Sensitivity to deposit rates	α^d	4.298**	(2.134)
Sensitivity to Pix	β^d	0.043	(0.460)
Additional sensitivity to Pix for large banks	δ^d	0.035	(0.031)
R ²	0.734		
Panel C: Central-West			
Sensitivity to deposit rates	α^d	-0.039***	(0.010)
Sensitivity to Pix	β^d	-0.095***	(0.015)
Additional sensitivity to Pix for large banks	δ^d	-0.057***	(0.006)
R ²	0.999		
Panel D: Southeast			
Sensitivity to deposit rates	α^d	-0.010	(2.507)
Sensitivity to Pix	β^d	0.380**	(0.181)
Additional sensitivity to Pix for large banks	δ^d	-0.016	(0.011)
R ²	0.915		
Panel E: South			
Sensitivity to deposit rates	α^d	0.684***	(0.244)
Sensitivity to Pix	β^d	0.379***	(0.111)
Additional sensitivity to Pix for large banks	δ^d	-0.024***	(0.007)
R ²	0.997		

Households

• Choose consumption and deposits to maximize their utility

$$U_0^i = \sum_{t=0}^T \log C_t^i$$

subject to

$$C_t^i + DL_{t+1}^i + DS_{t+1}^i \le Y_t^i + DL_t^i (1 + r_t^{d\ell}) + DS_t^i (1 + r_t^{ds})$$

Households

Choose consumption and deposits to maximize their utility

$$U_0^i = \sum_{t=0}^T \log C_t^i$$

subject to

$$C_t^i + DL_{t+1}^i + DS_{t+1}^i \le Y_t^i + DL_t^i (1 + r_t^{d\ell}) + DS_t^i (1 + r_t^{ds})$$

$$\eta C_t^i \leq DL_t^i + \varepsilon_t^i DS_t^i$$

ullet η – share of goods that require large bank deposits, $arepsilon_t^i$ is an iid shock with support $[0,arepsilon^u)$

48 / 57

Timeline

1. Decide on composition of portfolio

2. ε^i is realized

3. Decide on consumption

• Such structure results in precautionary savings

Banks

• Both large and small banks choose deposits and loans to maximize their value

$$V(D_t^b, L_t^b) = \max_{D_{t+1}^b, L_{t+1}^b} \phi N_t^b + \beta \mathbb{E}_t V(D_{t+1}^b, L_{t+1}^b)$$

where $N_t = L_t - D_t$

subject to the budget constraint

$$(1-\phi) \mathsf{N}_t^b \geq rac{1}{1+r_{t+1}^{\ell b}} \mathsf{L}_{t+1}^b - rac{1}{1+r_{t+1}^{db}} \mathsf{D}_{t+1}^b$$

and leverage constraint

$$\frac{1}{1 + r_{t+1}^{db}} D_{t+1}^b \le \xi \frac{1}{1 + r_{t+1}^{\ell b}} L_{t+1}^b$$

◆ロト ◆問 ト ◆意 ト ◆意 ト ・ ・ ● | ■ | 一 の へ ○

Instant payment system

- Instant payment system can be launched with two designs:
 - Available to all banks (like Pix)
 - 2 Available to large banks (like Zelle and Swish)
- If IPS is available only to large banks, it does not impact deposits
- Increase in deposit market concentration in the model with cash

Economy with cash

Cashless economy results

Proposition

In partial equilibrium, i.e., with fixed interest rates and exogenous endowment, Y_t , increase in support of ε_t^i from $[0,\varepsilon^u)$ to $(\varepsilon^l,1]$ in the evening of the preceding period leads to an increase in DS_t relative to DL_t .

Cashless economy results

Proposition

In partial equilibrium, i.e., with fixed interest rates and exogenous endowment, Y_t , increase in support of ε_t^i from $[0,\varepsilon^u)$ to $(\varepsilon^l,1]$ in the evening of the preceding period leads to an increase in DS_t relative to DL_t .

Reduction in deposit market concentration

Economy with cash

Interest rates

Proposition

Assume an increase (or no change) in $\frac{DS_t^i}{DL_t^i}$ for all households and an increase for at least one household. Then, the following holds:

- reduction in $r_t^{ds} r_t^{d\ell}$;
- **3** reduction in $r_t^{\ell s} r_t^{\ell \ell}$.

Interest rates

Proposition

Assume an increase (or no change) in $\frac{DS_t^i}{DL_t^i}$ for all households and an increase for at least one household. Then, the following holds:

- reduction in $r_t^{ds} r_t^{d\ell}$;
- 2 increase in $\frac{L_t^s}{L_t^\ell}$;
- **3** reduction in $r_t^{\ell s} r_t^{\ell \ell}$.

• Small banks pay relatively lower deposit rates and charge relatively lower loan rates

Model predictions

- Instant payment systems available to all banks reduce deposit market concentration
- Magnitudes depend on available functions and mitigated frictions
- Spreads between interest rates of small and large banks shrink
- Oeposits and loans increase
- Instant payment systems available only to large banks increase deposit market concentration

Model with cash

Choose consumption and deposits to maximize their utility

$$U_0^i = \sum_{t=0}^T \log C_t^i$$

subject to

$$C_t^i + DL_{t+1}^i + DS_{t+1}^i + M_{t+1}^i \le Y_t^i + DL_t^i (1 + r_t^{d\ell}) + DS_t^i (1 + r_t^{ds}) + M_t^i$$

Model with cash

• Choose consumption and deposits to maximize their utility

$$U_0^i = \sum_{t=0}^T \log C_t^i$$

subject to

$$C_t^i + DL_{t+1}^i + DS_{t+1}^i + M_{t+1}^i \le Y_t^i + DL_t^i (1 + r_t^{d\ell}) + DS_t^i (1 + r_t^{ds}) + M_t^i$$

$$\eta^{\ell} C_t^i \le M_t + u_t^i DL_t^i$$

$$\eta^{s}C_{t}^{i} \leq M_{t} + DL_{t}^{i} + \varepsilon_{t}^{i}DS_{t}^{i}$$

 $m{\circ}$ \mathcal{E}_t^i and u_t^i are iid shocks with supports $[0,\mathcal{E}^u)$ and $[0,u^u)$

Timeline

1. Decide on composition of portfolio

2. ε^i and u^i are realized

3. Decide on consumption

• Such structure results in precautionary savings of cash and large bank deposits

▶ Back

Results for the economy with cash

Proposition

In partial equilibrium, i.e., with fixed interest rates and exogenous endowment, Yt,

- increase in support of ε_t^i from $[0, \varepsilon^u)$ to $(\varepsilon^l, 1]$ in the evening of the preceding period leads to an increase in DS_t relative to DL_t and M_t ;
- ② increase in support of ε_s^i from $[0, \varepsilon^u)$ to $(\varepsilon^l, 1]$ in the evening of the preceding where s > t leads to an increase in DS_t relative to DL_t if the horizon of the model is finite;
- **1** increase in support of u_t^i from $[0, u^u)$ to $(u^l, 1]$ in the evening of the preceding period leads to an increase in DL_t relative to DS_t and M_t ;
- increase in support of u_t^i from $[0, u^u)$ to $(u^l, 1]$ in the evening of the preceding period where s > t leads to an increase in DL_t relative to DS_t and M_t if the horizon of the model is finite.

